feat: publishing infernet-container-starter v0.2.0
This commit is contained in:
25
projects/torch-iris/container/Dockerfile
Normal file
25
projects/torch-iris/container/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM python:3.11-slim as builder
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
ENV PYTHONDONTWRITEBYTECODE 1
|
||||
ENV PIP_NO_CACHE_DIR 1
|
||||
ENV RUNTIME docker
|
||||
ENV PYTHONPATH src
|
||||
|
||||
RUN apt-get update
|
||||
RUN apt-get install -y git curl
|
||||
|
||||
# install uv
|
||||
ADD --chmod=755 https://astral.sh/uv/install.sh /install.sh
|
||||
RUN /install.sh && rm /install.sh
|
||||
|
||||
COPY src/requirements.txt .
|
||||
|
||||
RUN /root/.cargo/bin/uv pip install --system --no-cache -r requirements.txt
|
||||
|
||||
COPY src src
|
||||
|
||||
ENTRYPOINT ["hypercorn", "app:create_app()"]
|
||||
CMD ["-b", "0.0.0.0:3000"]
|
17
projects/torch-iris/container/Makefile
Normal file
17
projects/torch-iris/container/Makefile
Normal file
@ -0,0 +1,17 @@
|
||||
DOCKER_ORG := ritualnetwork
|
||||
EXAMPLE_NAME := torch-iris
|
||||
TAG := $(DOCKER_ORG)/example-$(EXAMPLE_NAME)-infernet:latest
|
||||
|
||||
.phony: build run
|
||||
|
||||
build:
|
||||
@docker build -t $(TAG) .
|
||||
|
||||
run:
|
||||
docker run -p 3000:3000 $(TAG)
|
||||
|
||||
# You may need to set up a docker builder, to do so run:
|
||||
# docker buildx create --name mybuilder --bootstrap --use
|
||||
# refer to https://docs.docker.com/build/building/multi-platform/#building-multi-platform-images for more info
|
||||
build-multiplatform:
|
||||
docker buildx build --platform linux/amd64,linux/arm64 -t $(TAG) --push .
|
110
projects/torch-iris/container/README.md
Normal file
110
projects/torch-iris/container/README.md
Normal file
@ -0,0 +1,110 @@
|
||||
# Iris Classification via Torch
|
||||
|
||||
This example uses a pre-trained model to classify iris flowers. The code for the model
|
||||
is located at
|
||||
our [simple-ml-models](https://github.com/ritual-net/simple-ml-models/tree/main/iris_classification)
|
||||
repository.
|
||||
|
||||
## Overview
|
||||
|
||||
We're making use of
|
||||
the [TorchInferenceWorkflow](https://github.com/ritual-net/infernet-ml-internal/blob/main/src/ml/workflows/inference/torch_inference_workflow.py)
|
||||
class to run the model. This is one of many workflows that we currently support in our
|
||||
[infernet-ml](https://github.com/ritual-net/infernet-ml-internal). Consult the library's
|
||||
documentation for more info on workflows that
|
||||
are supported.
|
||||
|
||||
## Building & Running the Container in Isolation
|
||||
|
||||
Note that this container is meant to be started by the infernet-node. For development &
|
||||
testing purposes, you can run the container in isolation using the following commands.
|
||||
|
||||
### Building the Container
|
||||
|
||||
Simply run the following command to build the container.
|
||||
|
||||
```bash
|
||||
make build
|
||||
```
|
||||
|
||||
Consult the [Makefile](./Makefile) for the build command.
|
||||
|
||||
### Running the Container
|
||||
|
||||
To run the container, you can use the following command:
|
||||
|
||||
```bash
|
||||
make run
|
||||
```
|
||||
|
||||
## Testing the Container
|
||||
|
||||
Run the following command to perform an inference:
|
||||
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:3000/service_output" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"source":1, "data": {"input": [[1.0380048, 0.5586108, 1.1037828, 1.712096]]}}'
|
||||
```
|
||||
|
||||
#### Note Regarding the Input
|
||||
|
||||
The inputs provided above correspond to an iris flower with the following
|
||||
characteristics. Refer to the
|
||||
|
||||
1. Sepal Length: `5.5cm`
|
||||
2. Sepal Width: `2.4cm`
|
||||
3. Petal Length: `3.8cm`
|
||||
4. Petal Width: `1.1cm`
|
||||
|
||||
Putting this input into a vector and scaling it, we get the following scaled input:
|
||||
|
||||
```python
|
||||
[1.0380048, 0.5586108, 1.1037828, 1.712096]
|
||||
```
|
||||
|
||||
Refer
|
||||
to [this function in the model's repository](https://github.com/ritual-net/simple-ml-models/blob/03ebc6fb15d33efe20b7782505b1a65ce3975222/iris_classification/iris_inference_pytorch.py#L13)
|
||||
for more information on how the input is scaled.
|
||||
|
||||
For more context on the Iris dataset, refer to
|
||||
the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
|
||||
|
||||
### Output
|
||||
|
||||
By running the above command, you should get a response similar to the following:
|
||||
|
||||
```json
|
||||
{
|
||||
"input_data": [
|
||||
[
|
||||
1.0380048,
|
||||
0.5586108,
|
||||
1.1037828,
|
||||
1.712096
|
||||
]
|
||||
],
|
||||
"input_shapes": [
|
||||
[
|
||||
4
|
||||
]
|
||||
],
|
||||
"output_data": [
|
||||
[
|
||||
0.0016699483385309577,
|
||||
0.021144982427358627,
|
||||
0.977185070514679
|
||||
]
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
The `output_data` corresponds to the model's prediction for each of the classes:
|
||||
|
||||
```python
|
||||
['setosa', 'versicolor', 'virginica']
|
||||
```
|
||||
|
||||
In this case, the model predicts that the input corresponds to the class `virginica`
|
||||
with
|
||||
a probability of `0.977185070514679` (97.7%).
|
50
projects/torch-iris/container/config.json
Normal file
50
projects/torch-iris/container/config.json
Normal file
@ -0,0 +1,50 @@
|
||||
{
|
||||
"log_path": "infernet_node.log",
|
||||
"server": {
|
||||
"port": 4000
|
||||
},
|
||||
"chain": {
|
||||
"enabled": true,
|
||||
"trail_head_blocks": 0,
|
||||
"rpc_url": "http://host.docker.internal:8545",
|
||||
"coordinator_address": "0x5FbDB2315678afecb367f032d93F642f64180aa3",
|
||||
"wallet": {
|
||||
"max_gas_limit": 4000000,
|
||||
"private_key": "0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d"
|
||||
}
|
||||
},
|
||||
"startup_wait": 1.0,
|
||||
"docker": {
|
||||
"username": "your-username",
|
||||
"password": ""
|
||||
},
|
||||
"redis": {
|
||||
"host": "redis",
|
||||
"port": 6379
|
||||
},
|
||||
"forward_stats": true,
|
||||
"containers": [
|
||||
{
|
||||
"id": "torch-iris",
|
||||
"image": "ritualnetwork/example-torch-iris-infernet:latest",
|
||||
"external": true,
|
||||
"port": "3000",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "--bind=0.0.0.0:3000 --workers=2",
|
||||
"env": {}
|
||||
},
|
||||
{
|
||||
"id": "anvil-node",
|
||||
"image": "ritualnetwork/infernet-anvil:0.0.0",
|
||||
"external": true,
|
||||
"port": "8545",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "",
|
||||
"env": {}
|
||||
}
|
||||
]
|
||||
}
|
52
projects/torch-iris/container/scripts/sample_endpoints.py
Normal file
52
projects/torch-iris/container/scripts/sample_endpoints.py
Normal file
@ -0,0 +1,52 @@
|
||||
import asyncio
|
||||
|
||||
import aiohttp
|
||||
from eth_abi import encode, decode # type: ignore
|
||||
|
||||
|
||||
async def ping(session: aiohttp.ClientSession) -> None:
|
||||
async with session.get("http://127.0.0.1:3000/") as response:
|
||||
print(await response.text())
|
||||
|
||||
|
||||
async def post_directly_web2(session: aiohttp.ClientSession) -> None:
|
||||
async with session.post(
|
||||
"http://127.0.0.1:3000/service_output",
|
||||
json={
|
||||
"source": 1,
|
||||
"data": {"input": [[1.0380048, 0.5586108, 1.1037828, 1.712096]]},
|
||||
},
|
||||
) as response:
|
||||
print(await response.json())
|
||||
|
||||
|
||||
async def post_directly_web3(session: aiohttp.ClientSession) -> None:
|
||||
async with session.post(
|
||||
"http://127.0.0.1:3000/service_output",
|
||||
json={
|
||||
"source": 0,
|
||||
"data": encode(
|
||||
["uint256[]"], [[1_038_004, 558_610, 1_103_782, 1_712_096]]
|
||||
).hex(),
|
||||
},
|
||||
) as response:
|
||||
print(await response.text())
|
||||
result = await response.json()
|
||||
output = result["raw_output"]
|
||||
result = decode(["uint256[]"], bytes.fromhex(output))[0]
|
||||
print(f"result: {result}")
|
||||
|
||||
|
||||
# async main
|
||||
async def main(session: aiohttp.ClientSession) -> None:
|
||||
await post_directly_web3(session)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# run main async
|
||||
|
||||
async def provide_session() -> None:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
await main(session)
|
||||
|
||||
asyncio.run(provide_session())
|
110
projects/torch-iris/container/src/app.py
Normal file
110
projects/torch-iris/container/src/app.py
Normal file
@ -0,0 +1,110 @@
|
||||
import logging
|
||||
from typing import Any, cast, List
|
||||
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.model_loader import ModelSource
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.workflows.inference.torch_inference_workflow import (
|
||||
TorchInferenceWorkflow,
|
||||
)
|
||||
from quart import Quart, request
|
||||
|
||||
# Note: the IrisClassificationModel needs to be imported in this file for it to exist
|
||||
# in the classpath. This is because pytorch requires the model to be in the classpath.
|
||||
# Simply downloading the weights and model from the hub is not enough.
|
||||
from iris_classification_model import IrisClassificationModel
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
# we are downloading the model from the hub.
|
||||
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
|
||||
model_source = ModelSource.HUGGINGFACE_HUB
|
||||
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.torch"}
|
||||
|
||||
workflow = TorchInferenceWorkflow(model_source=model_source, model_args=model_args)
|
||||
workflow.setup()
|
||||
|
||||
@app.route("/")
|
||||
def index() -> str:
|
||||
"""
|
||||
Utility endpoint to check if the service is running.
|
||||
"""
|
||||
return (
|
||||
f"Torch Iris Classifier Example Program: {IrisClassificationModel.__name__}"
|
||||
)
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
source: (0 on-chain, 1 off-chain)
|
||||
data: dict[str, Any]
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
|
||||
"""
|
||||
The input to the torch inference workflow needs to conform to this format:
|
||||
|
||||
{
|
||||
"dtype": str,
|
||||
"values": list[Any]
|
||||
}
|
||||
|
||||
For more information refer to:
|
||||
https://docs.ritual.net/ml-workflows/inference-workflows/torch_inference_workflow
|
||||
|
||||
"""
|
||||
inference_result = workflow.inference({"dtype": "float", "values": values})
|
||||
|
||||
result = [o.detach().numpy().reshape([-1]).tolist() for o in inference_result]
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return {"result": result}
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
predictions = cast(List[List[float]], result)
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions[0]]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Utility to run the app locally. For development purposes only.
|
||||
"""
|
||||
create_app().run(port=3000)
|
@ -0,0 +1,23 @@
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
The IrisClassificationModel torch module. This is the computation graph that was used to
|
||||
train the model. Refer to:
|
||||
https://github.com/ritual-net/simple-ml-models/tree/main/iris_classification
|
||||
"""
|
||||
|
||||
|
||||
class IrisClassificationModel(nn.Module):
|
||||
def __init__(self, input_dim: int) -> None:
|
||||
super(IrisClassificationModel, self).__init__()
|
||||
self.layer1 = nn.Linear(input_dim, 50)
|
||||
self.layer2 = nn.Linear(50, 50)
|
||||
self.layer3 = nn.Linear(50, 3)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.relu(self.layer1(x))
|
||||
x = F.relu(self.layer2(x))
|
||||
x = F.softmax(self.layer3(x), dim=1)
|
||||
return x
|
7
projects/torch-iris/container/src/requirements.txt
Normal file
7
projects/torch-iris/container/src/requirements.txt
Normal file
@ -0,0 +1,7 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
huggingface-hub==0.17.3
|
||||
sk2torch==1.2.0
|
||||
torch==2.1.2
|
||||
web3==6.15.0
|
14
projects/torch-iris/contracts/.gitignore
vendored
Normal file
14
projects/torch-iris/contracts/.gitignore
vendored
Normal file
@ -0,0 +1,14 @@
|
||||
# Compiler files
|
||||
cache/
|
||||
out/
|
||||
|
||||
# Ignores development broadcast logs
|
||||
!/broadcast
|
||||
/broadcast/*/31337/
|
||||
/broadcast/**/dry-run/
|
||||
|
||||
# Docs
|
||||
docs/
|
||||
|
||||
# Dotenv file
|
||||
.env
|
14
projects/torch-iris/contracts/Makefile
Normal file
14
projects/torch-iris/contracts/Makefile
Normal file
@ -0,0 +1,14 @@
|
||||
# phony targets are targets that don't actually create a file
|
||||
.phony: deploy call-contract
|
||||
|
||||
# anvil's third default address
|
||||
sender := 0x5de4111afa1a4b94908f83103eb1f1706367c2e68ca870fc3fb9a804cdab365a
|
||||
RPC_URL := http://localhost:8545
|
||||
|
||||
# deploying the contract
|
||||
deploy:
|
||||
@PRIVATE_KEY=$(sender) forge script script/Deploy.s.sol:Deploy --broadcast --rpc-url $(RPC_URL)
|
||||
|
||||
# calling sayGM()
|
||||
call-contract:
|
||||
@PRIVATE_KEY=$(sender) forge script script/CallContract.s.sol:CallContract --broadcast --rpc-url $(RPC_URL)
|
41
projects/torch-iris/contracts/README.md
Normal file
41
projects/torch-iris/contracts/README.md
Normal file
@ -0,0 +1,41 @@
|
||||
# `Torch` Consumer Contracts
|
||||
|
||||
This is a [foundry](https://book.getfoundry.sh/) project that implements a simple Consumer
|
||||
contract, [`IrisClassifier`](./src/IrisClassifier.sol).
|
||||
|
||||
This readme explains how to compile and deploy the contract to the Infernet Anvil Testnet network.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure that you are running the following scripts with the Infernet Anvil Testnet network.
|
||||
> The [tutorial](../../hello-world/README.mdADME.md) at the root of this repository explains how to
|
||||
> bring up an infernet node.
|
||||
|
||||
### Installing the libraries
|
||||
|
||||
```bash
|
||||
forge install
|
||||
```
|
||||
|
||||
### Compiling the contracts
|
||||
|
||||
```bash
|
||||
forge compile
|
||||
```
|
||||
|
||||
### Deploying the contracts
|
||||
The deploy script at `script/Deploy.s.sol` deploys the `IrisClassifier` contract to the Infernet Anvil Testnet network.
|
||||
|
||||
We have the [following make target](./Makefile#L9) to deploy the contract. Refer to the Makefile
|
||||
for more understanding around the deploy scripts.
|
||||
```bash
|
||||
make deploy
|
||||
```
|
||||
|
||||
### Requesting a job
|
||||
We also have a script called `CallContract.s.sol` that requests a job to the `IrisClassifier` contract.
|
||||
Refer to the [script](./script/CallContract.s.sol) for more details. Similar to deployment,
|
||||
you can run that script using the following convenience make target.
|
||||
```bash
|
||||
make call-contract
|
||||
```
|
||||
Refer to the [Makefile](./Makefile#L14) for more details.
|
7
projects/torch-iris/contracts/foundry.toml
Normal file
7
projects/torch-iris/contracts/foundry.toml
Normal file
@ -0,0 +1,7 @@
|
||||
[profile.default]
|
||||
src = "src"
|
||||
out = "out"
|
||||
libs = ["lib"]
|
||||
via_ir = true
|
||||
|
||||
# See more config options https://github.com/foundry-rs/foundry/blob/master/crates/config/README.md#all-options
|
2
projects/torch-iris/contracts/remappings.txt
Normal file
2
projects/torch-iris/contracts/remappings.txt
Normal file
@ -0,0 +1,2 @@
|
||||
forge-std/=lib/forge-std/src
|
||||
infernet-sdk/=lib/infernet-sdk/src
|
19
projects/torch-iris/contracts/script/CallContract.s.sol
Normal file
19
projects/torch-iris/contracts/script/CallContract.s.sol
Normal file
@ -0,0 +1,19 @@
|
||||
// SPDX-License-Identifier: BSD-3-Clause-Clear
|
||||
pragma solidity ^0.8.0;
|
||||
|
||||
import {Script, console2} from "forge-std/Script.sol";
|
||||
import {IrisClassifier} from "../src/IrisClassifier.sol";
|
||||
|
||||
contract CallContract is Script {
|
||||
function run() public {
|
||||
// Setup wallet
|
||||
uint256 deployerPrivateKey = vm.envUint("PRIVATE_KEY");
|
||||
vm.startBroadcast(deployerPrivateKey);
|
||||
|
||||
IrisClassifier irisClassifier = IrisClassifier(0x663F3ad617193148711d28f5334eE4Ed07016602);
|
||||
|
||||
irisClassifier.classifyIris();
|
||||
|
||||
vm.stopBroadcast();
|
||||
}
|
||||
}
|
26
projects/torch-iris/contracts/script/Deploy.s.sol
Normal file
26
projects/torch-iris/contracts/script/Deploy.s.sol
Normal file
@ -0,0 +1,26 @@
|
||||
// SPDX-License-Identifier: BSD-3-Clause-Clear
|
||||
pragma solidity ^0.8.13;
|
||||
|
||||
import {Script, console2} from "forge-std/Script.sol";
|
||||
import {IrisClassifier} from "../src/IrisClassifier.sol";
|
||||
|
||||
contract Deploy is Script {
|
||||
function run() public {
|
||||
// Setup wallet
|
||||
uint256 deployerPrivateKey = vm.envUint("PRIVATE_KEY");
|
||||
vm.startBroadcast(deployerPrivateKey);
|
||||
|
||||
// Log address
|
||||
address deployerAddress = vm.addr(deployerPrivateKey);
|
||||
console2.log("Loaded deployer: ", deployerAddress);
|
||||
|
||||
address coordinator = 0x5FbDB2315678afecb367f032d93F642f64180aa3;
|
||||
// Create consumer
|
||||
IrisClassifier classifier = new IrisClassifier(coordinator);
|
||||
console2.log("Deployed IrisClassifier: ", address(classifier));
|
||||
|
||||
// Execute
|
||||
vm.stopBroadcast();
|
||||
vm.broadcast();
|
||||
}
|
||||
}
|
67
projects/torch-iris/contracts/src/IrisClassifier.sol
Normal file
67
projects/torch-iris/contracts/src/IrisClassifier.sol
Normal file
@ -0,0 +1,67 @@
|
||||
// SPDX-License-Identifier: BSD-3-Clause-Clear
|
||||
pragma solidity ^0.8.13;
|
||||
|
||||
import {console2} from "forge-std/console2.sol";
|
||||
import {CallbackConsumer} from "infernet-sdk/consumer/Callback.sol";
|
||||
|
||||
|
||||
contract IrisClassifier is CallbackConsumer {
|
||||
string private EXTREMELY_COOL_BANNER = "\n\n"
|
||||
"_____ _____ _______ _ _ _\n"
|
||||
"| __ \\|_ _|__ __| | | | /\\ | |\n"
|
||||
"| |__) | | | | | | | | | / \\ | |\n"
|
||||
"| _ / | | | | | | | |/ /\\ \\ | |\n"
|
||||
"| | \\ \\ _| |_ | | | |__| / ____ \\| |____\n"
|
||||
"|_| \\_\\_____| |_| \\____/_/ \\_\\______|\n\n";
|
||||
|
||||
constructor(address coordinator) CallbackConsumer(coordinator) {}
|
||||
|
||||
function classifyIris() public {
|
||||
/// @dev Iris data is in the following format:
|
||||
/// @dev [sepal_length, sepal_width, petal_length, petal_width]
|
||||
/// @dev the following vector corresponds to the following properties:
|
||||
/// "sepal_length": 5.5cm
|
||||
/// "sepal_width": 2.4cm
|
||||
/// "petal_length": 3.8cm
|
||||
/// "petal_width": 1.1cm
|
||||
/// @dev The data is normalized & scaled.
|
||||
/// refer to [this function in the model's repository](https://github.com/ritual-net/simple-ml-models/blob/03ebc6fb15d33efe20b7782505b1a65ce3975222/iris_classification/iris_inference_pytorch.py#L13)
|
||||
/// for more info on normalization.
|
||||
/// @dev The data is adjusted by 6 decimals
|
||||
|
||||
uint256[] memory iris_data = new uint256[](4);
|
||||
iris_data[0] = 1_038_004;
|
||||
iris_data[1] = 558_610;
|
||||
iris_data[2] = 1_103_782;
|
||||
iris_data[3] = 1_712_096;
|
||||
|
||||
_requestCompute(
|
||||
"torch-iris",
|
||||
abi.encode(iris_data),
|
||||
20 gwei,
|
||||
1_000_000,
|
||||
1
|
||||
);
|
||||
}
|
||||
|
||||
function _receiveCompute(
|
||||
uint32 subscriptionId,
|
||||
uint32 interval,
|
||||
uint16 redundancy,
|
||||
address node,
|
||||
bytes calldata input,
|
||||
bytes calldata output,
|
||||
bytes calldata proof
|
||||
) internal override {
|
||||
console2.log(EXTREMELY_COOL_BANNER);
|
||||
(bytes memory raw_output, bytes memory processed_output) = abi.decode(output, (bytes, bytes));
|
||||
(uint256[] memory classes) = abi.decode(raw_output, (uint256[]));
|
||||
uint256 setosa = classes[0];
|
||||
uint256 versicolor = classes[1];
|
||||
uint256 virginica = classes[2];
|
||||
console2.log("predictions: (adjusted by 6 decimals, 1_000_000 = 100%, 1_000 = 0.1%)");
|
||||
console2.log("Setosa: ", setosa);
|
||||
console2.log("Versicolor: ", versicolor);
|
||||
console2.log("Virginica: ", virginica);
|
||||
}
|
||||
}
|
292
projects/torch-iris/torch-iris.md
Normal file
292
projects/torch-iris/torch-iris.md
Normal file
@ -0,0 +1,292 @@
|
||||
# Running a Torch Model on Infernet
|
||||
|
||||
Welcome to this comprehensive guide where we'll explore how to run a `pytorch` model on Infernet. If you've followed
|
||||
our ONNX example, you'll find this guide to be quite similar.
|
||||
|
||||
**Model:** This example uses a pre-trained model to classify iris flowers. The code for the model
|
||||
is located at the [simple-ml-models](https://github.com/ritual-net/simple-ml-models/tree/main/iris_classification)
|
||||
repository.
|
||||
|
||||
## Pre-requisites
|
||||
|
||||
For this tutorial you'll need to have the following installed.
|
||||
|
||||
1. [Docker](https://docs.docker.com/engine/install/)
|
||||
2. [Foundry](https://book.getfoundry.sh/getting-started/installation)
|
||||
|
||||
### Ensure `docker` & `foundry` exist
|
||||
|
||||
To check for `docker`, run the following command in your terminal:
|
||||
|
||||
```bash copy
|
||||
docker --version
|
||||
# Docker version 25.0.2, build 29cf629 (example output)
|
||||
```
|
||||
|
||||
You'll also need to ensure that docker-compose exists in your terminal:
|
||||
|
||||
```bash copy
|
||||
which docker-compose
|
||||
# /usr/local/bin/docker-compose (example output)
|
||||
```
|
||||
|
||||
To check for `foundry`, run the following command in your terminal:
|
||||
|
||||
```bash copy
|
||||
forge --version
|
||||
# forge 0.2.0 (551bcb5 2024-02-28T07:40:42.782478000Z) (example output)
|
||||
```
|
||||
|
||||
### Clone the starter repository
|
||||
|
||||
If you haven't already, clone the infernet-container-starter repository. All of the code for this tutorial is located
|
||||
under the `projects/torch-iris` directory.
|
||||
|
||||
```bash copy
|
||||
# Clone locally
|
||||
git clone --recurse-submodules https://github.com/ritual-net/infernet-container-starter
|
||||
# Navigate to the repository
|
||||
cd infernet-container-starter
|
||||
```
|
||||
|
||||
### Build the `torch-iris` container
|
||||
|
||||
From the top-level directory of this repository, simply run the following command to build the `torch-iris` container:
|
||||
|
||||
```bash copy
|
||||
make build-container project=torch-iris
|
||||
```
|
||||
|
||||
After the container is built, you can deploy an infernet-node that utilizes that
|
||||
container by running the following command:
|
||||
|
||||
```bash
|
||||
make deploy-container project=torch-iris
|
||||
```
|
||||
|
||||
## Making Inference Requests via Node API (a la Web2 request)
|
||||
|
||||
Now, you can make inference requests to the infernet-node. In a new tab, run:
|
||||
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:4000/api/jobs" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"containers":["torch-iris"], "data": {"input": [[1.0380048, 0.5586108, 1.1037828, 1.712096]]}}'
|
||||
```
|
||||
|
||||
You should get an output similar to the following:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "6d5e47f0-5907-4ab2-9523-862dccb80d67"
|
||||
}
|
||||
```
|
||||
|
||||
Now, you can check the status of the job by running (make sure job id matches the one
|
||||
you got from the previous request):
|
||||
|
||||
```bash
|
||||
curl "http://127.0.0.1:4000/api/jobs?id=6d5e47f0-5907-4ab2-9523-862dccb80d67"
|
||||
```
|
||||
|
||||
Should return:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"id": "6d5e47f0-5907-4ab2-9523-862dccb80d67",
|
||||
"result": {
|
||||
"container": "torch-iris",
|
||||
"output": {
|
||||
"input_data": [
|
||||
[
|
||||
1.038004755973816,
|
||||
0.5586107969284058,
|
||||
1.1037827730178833,
|
||||
1.7120959758758545
|
||||
]
|
||||
],
|
||||
"input_shapes": [
|
||||
[
|
||||
4
|
||||
]
|
||||
],
|
||||
"output_data": [
|
||||
[
|
||||
0.0016699483385309577,
|
||||
0.021144982427358627,
|
||||
0.977185070514679
|
||||
]
|
||||
]
|
||||
}
|
||||
},
|
||||
"status": "success"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
#### Note Regarding the Input
|
||||
|
||||
The inputs provided above correspond to an iris flower with the following
|
||||
characteristics. Refer to the
|
||||
|
||||
1. Sepal Length: `5.5cm`
|
||||
2. Sepal Width: `2.4cm`
|
||||
3. Petal Length: `3.8cm`
|
||||
4. Petal Width: `1.1cm`
|
||||
|
||||
Putting this input into a vector and scaling it, we get the following scaled input:
|
||||
|
||||
```python
|
||||
[1.0380048, 0.5586108, 1.1037828, 1.712096]
|
||||
```
|
||||
|
||||
Refer
|
||||
to [this function in the model's repository](https://github.com/ritual-net/simple-ml-models/blob/03ebc6fb15d33efe20b7782505b1a65ce3975222/iris_classification/iris_inference_pytorch.py#L13)
|
||||
for more information on how the input is scaled.
|
||||
|
||||
For more context on the Iris dataset, refer to
|
||||
the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
|
||||
|
||||
## Making Inference Requests via Contracts (a la Web3 request)
|
||||
|
||||
The [contracts](contracts) directory contains a simple forge
|
||||
project that can be used to interact with the Infernet Node.
|
||||
|
||||
Here, we have a very simple
|
||||
contract, [IrisClassifier](contracts/src/IrisClassifier.sol),
|
||||
that requests a compute job from the Infernet Node and then retrieves the result.
|
||||
We are going to make the same request as above, but this time using a smart contract.
|
||||
Since floats are not supported in Solidity, we convert all floats to `uint256` by
|
||||
multiplying the input vector entries by `1e6`:
|
||||
|
||||
```solidity
|
||||
uint256[] memory iris_data = new uint256[](4);
|
||||
iris_data[0] = 1_038_004;
|
||||
iris_data[1] = 558_610;
|
||||
iris_data[2] = 1_103_782;
|
||||
iris_data[3] = 1_712_096;
|
||||
```
|
||||
|
||||
We have multiplied the input by 1e6 to have enough decimals accuracy. This can be seen
|
||||
[here](contracts/src/IrisClassifier.sol#19) in the contract's
|
||||
code.
|
||||
|
||||
### Infernet's Anvil Testnet
|
||||
|
||||
To request an on-chain job, you'll need to deploy contracts using the infernet sdk.
|
||||
We already have a public [anvil node](https://hub.docker.com/r/ritualnetwork/infernet-anvil) docker image which has the
|
||||
corresponding infernet sdk contracts deployed, along with a node that has
|
||||
registered itself to listen to on-chain subscription events.
|
||||
|
||||
* Coordinator Address: `0x5FbDB2315678afecb367f032d93F642f64180aa3`
|
||||
* Node Address: `0x70997970C51812dc3A010C7d01b50e0d17dc79C8` (This is the second account in the anvil's accounts.)
|
||||
|
||||
### Monitoring the EVM Logs
|
||||
|
||||
The infernet node configuration for this project includes our anvil node. You can monitor the logs of the anvil node to
|
||||
see what's going on. In a new terminal, run:
|
||||
|
||||
```bash
|
||||
docker logs -f anvil-node
|
||||
```
|
||||
|
||||
As you deploy the contract and make requests, you should see logs indicating the
|
||||
requests and responses.
|
||||
|
||||
### Deploying the Contract
|
||||
|
||||
Simply run the following command to deploy the contract:
|
||||
|
||||
```bash
|
||||
project=torch-iris make deploy-contracts
|
||||
```
|
||||
|
||||
In your anvil logs you should see the following:
|
||||
|
||||
```bash
|
||||
eth_feeHistory
|
||||
eth_sendRawTransaction
|
||||
eth_getTransactionReceipt
|
||||
|
||||
Transaction: 0x8e7e96d0a062285ee6fea864c43c29af65b962d260955e6284ab79dae145b32c
|
||||
Contract created: 0x663f3ad617193148711d28f5334ee4ed07016602
|
||||
Gas used: 725947
|
||||
|
||||
Block Number: 1
|
||||
Block Hash: 0x88c1a1af024cca6f921284bd61663b1d500aa6d22d06571f0a085c2d8e1ffe92
|
||||
Block Time: "Mon, 19 Feb 2024 16:44:00 +0000"
|
||||
|
||||
eth_blockNumber
|
||||
eth_newFilter
|
||||
eth_getFilterLogs
|
||||
eth_blockNumber
|
||||
```
|
||||
|
||||
beautiful, we can see that a new contract has been created
|
||||
at `0x663f3ad617193148711d28f5334ee4ed07016602`. That's the address of
|
||||
the `IrisClassifier` contract. We are now going to call this contract. To do so,
|
||||
we are using
|
||||
the [CallContract.s.sol](contracts/script/CallContract.s.sol)
|
||||
script. Note that the address of the
|
||||
contract [is hardcoded in the script](contracts/script/CallContract.s.sol#L13),
|
||||
and should match the address we see above. Since this is a test environment and we're
|
||||
using a test deployer address, this address is quite deterministic and shouldn't change.
|
||||
Otherwise, change the address in the script to match the address of the contract you
|
||||
just deployed.
|
||||
|
||||
### Calling the Contract
|
||||
|
||||
To call the contract, run the following command:
|
||||
|
||||
```bash
|
||||
project=torch-iris make call-contract
|
||||
```
|
||||
|
||||
In the anvil logs, you should see the following:
|
||||
|
||||
```bash
|
||||
eth_sendRawTransaction
|
||||
|
||||
|
||||
_____ _____ _______ _ _ _
|
||||
| __ \|_ _|__ __| | | | /\ | |
|
||||
| |__) | | | | | | | | | / \ | |
|
||||
| _ / | | | | | | | |/ /\ \ | |
|
||||
| | \ \ _| |_ | | | |__| / ____ \| |____
|
||||
|_| \_\_____| |_| \____/_/ \_\______|
|
||||
|
||||
|
||||
about to decode babyyy
|
||||
predictions: (adjusted by 6 decimals, 1_000_000 = 100%, 1_000 = 0.1%)
|
||||
Setosa: 1669
|
||||
Versicolor: 21144
|
||||
Virginica: 977185
|
||||
|
||||
Transaction: 0x252158ab9dd2178b6a11e417090988782861d208d8e9bb01c4e0635316fd95c9
|
||||
Gas used: 111762
|
||||
|
||||
Block Number: 3
|
||||
Block Hash: 0xfba07bd65da8dde644ba07ff67f0d79ed36f388760f27dcf02d96f7912d34c4c
|
||||
Block Time: "Mon, 19 Feb 2024 16:54:07 +0000"
|
||||
|
||||
eth_blockNumbereth_blockNumber
|
||||
eth_blockNumber
|
||||
```
|
||||
|
||||
Beautiful! We can see that the same result has been posted to the contract.
|
||||
|
||||
For more information about the container, consult
|
||||
the [container's readme.](container/README.md)
|
||||
|
||||
### Next Steps
|
||||
|
||||
From here, you can bring your own trained pytorch model, and with minimal changes, you can make it both work with an
|
||||
infernet-node as well as a smart contract.
|
||||
|
||||
### More Information
|
||||
|
||||
1. Check out our [ONNX example](../onnx-iris/onnx-iris.md) if you haven't already.
|
||||
2. [Infernet Callback Consumer Tutorial](https://docs.ritual.net/infernet/sdk/consumers/Callback)
|
||||
3. [Infernet Nodes Docoumentation](https://docs.ritual.net/infernet/node/introduction)
|
||||
4. [Infernet-Compatible Containers](https://docs.ritual.net/infernet/node/containers)
|
Reference in New Issue
Block a user