91 lines
2.8 KiB
Python
91 lines
2.8 KiB
Python
|
import logging
|
||
|
from typing import Any, cast
|
||
|
|
||
|
from eth_abi import decode, encode # type: ignore
|
||
|
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||
|
from infernet_ml.workflows.inference.css_inference_workflow import CSSInferenceWorkflow
|
||
|
from quart import Quart, request
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def create_app() -> Quart:
|
||
|
app = Quart(__name__)
|
||
|
|
||
|
workflow = CSSInferenceWorkflow(provider="OPENAI", endpoint="completions")
|
||
|
|
||
|
workflow.setup()
|
||
|
|
||
|
@app.route("/")
|
||
|
def index() -> str:
|
||
|
"""
|
||
|
Utility endpoint to check if the service is running.
|
||
|
"""
|
||
|
return "GPT4 Example Program"
|
||
|
|
||
|
@app.route("/service_output", methods=["POST"])
|
||
|
async def inference() -> dict[str, Any]:
|
||
|
req_data = await request.get_json()
|
||
|
"""
|
||
|
InfernetInput has the format:
|
||
|
source: (0 on-chain, 1 off-chain)
|
||
|
data: dict[str, Any]
|
||
|
"""
|
||
|
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||
|
|
||
|
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||
|
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
|
||
|
else:
|
||
|
# On-chain requests are sent as a generalized hex-string which we will
|
||
|
# decode to the appropriate format.
|
||
|
(prompt,) = decode(
|
||
|
["string"], bytes.fromhex(cast(str, infernet_input.data))
|
||
|
)
|
||
|
|
||
|
result: dict[str, Any] = workflow.inference(
|
||
|
{
|
||
|
"model": "gpt-4-0613",
|
||
|
"params": {
|
||
|
"endpoint": "completions",
|
||
|
"messages": [
|
||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||
|
{"role": "user", "content": prompt},
|
||
|
],
|
||
|
},
|
||
|
}
|
||
|
)
|
||
|
|
||
|
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||
|
"""
|
||
|
In case of an off-chain request, the result is returned as is.
|
||
|
"""
|
||
|
return {"message": result}
|
||
|
else:
|
||
|
"""
|
||
|
In case of an on-chain request, the result is returned in the format:
|
||
|
{
|
||
|
"raw_input": str,
|
||
|
"processed_input": str,
|
||
|
"raw_output": str,
|
||
|
"processed_output": str,
|
||
|
"proof": str,
|
||
|
}
|
||
|
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||
|
"""
|
||
|
return {
|
||
|
"raw_input": "",
|
||
|
"processed_input": "",
|
||
|
"raw_output": encode(["string"], [result]).hex(),
|
||
|
"processed_output": "",
|
||
|
"proof": "",
|
||
|
}
|
||
|
|
||
|
return app
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
"""
|
||
|
Utility to run the app locally. For development purposes only.
|
||
|
"""
|
||
|
create_app().run(port=3000)
|