import logging from typing import Any, cast from eth_abi import decode, encode # type: ignore from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource from infernet_ml.workflows.inference.css_inference_workflow import CSSInferenceWorkflow from quart import Quart, request log = logging.getLogger(__name__) def create_app() -> Quart: app = Quart(__name__) workflow = CSSInferenceWorkflow(provider="OPENAI", endpoint="completions") workflow.setup() @app.route("/") def index() -> str: """ Utility endpoint to check if the service is running. """ return "GPT4 Example Program" @app.route("/service_output", methods=["POST"]) async def inference() -> dict[str, Any]: req_data = await request.get_json() """ InfernetInput has the format: source: (0 on-chain, 1 off-chain) data: dict[str, Any] """ infernet_input: InfernetInput = InfernetInput(**req_data) if infernet_input.source == InfernetInputSource.OFFCHAIN: prompt = cast(dict[str, Any], infernet_input.data).get("prompt") else: # On-chain requests are sent as a generalized hex-string which we will # decode to the appropriate format. (prompt,) = decode( ["string"], bytes.fromhex(cast(str, infernet_input.data)) ) result: dict[str, Any] = workflow.inference( { "model": "gpt-4-0613", "params": { "endpoint": "completions", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ], }, } ) if infernet_input.source == InfernetInputSource.OFFCHAIN: """ In case of an off-chain request, the result is returned as is. """ return {"message": result} else: """ In case of an on-chain request, the result is returned in the format: { "raw_input": str, "processed_input": str, "raw_output": str, "processed_output": str, "proof": str, } refer to: https://docs.ritual.net/infernet/node/containers for more info. """ return { "raw_input": "", "processed_input": "", "raw_output": encode(["string"], [result]).hex(), "processed_output": "", "proof": "", } return app if __name__ == "__main__": """ Utility to run the app locally. For development purposes only. """ create_app().run(port=3000)