Compare commits
	
		
			2 Commits
		
	
	
		
			lasso-1
			...
			9a211a4748
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 9a211a4748 | |||
| 14e8c74962 | 
							
								
								
									
										44
									
								
								app.py
									
									
									
									
									
								
							
							
						
						
									
										44
									
								
								app.py
									
									
									
									
									
								
							@ -4,7 +4,7 @@ import pandas as pd
 | 
			
		||||
import numpy as np
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from flask import Flask, jsonify, Response
 | 
			
		||||
from model import download_data, format_data, train_model
 | 
			
		||||
from model import download_data, format_data, train_model, training_price_data_path
 | 
			
		||||
from config import model_file_path
 | 
			
		||||
 | 
			
		||||
app = Flask(__name__)
 | 
			
		||||
@ -19,14 +19,36 @@ def update_data():
 | 
			
		||||
 | 
			
		||||
def get_eth_inference():
 | 
			
		||||
    """Load model and predict current price."""
 | 
			
		||||
    with open(model_file_path, "rb") as f:
 | 
			
		||||
        loaded_model = pickle.load(f)
 | 
			
		||||
    try:
 | 
			
		||||
        with open(model_file_path, "rb") as f:
 | 
			
		||||
            loaded_model = pickle.load(f)
 | 
			
		||||
 | 
			
		||||
    now_timestamp = pd.Timestamp(datetime.now()).timestamp()
 | 
			
		||||
    X_new = np.array([now_timestamp]).reshape(-1, 1)
 | 
			
		||||
    current_price_pred = loaded_model.predict(X_new)
 | 
			
		||||
        # Загружаем последние данные из файла
 | 
			
		||||
        price_data = pd.read_csv(training_price_data_path)
 | 
			
		||||
 | 
			
		||||
    return current_price_pred[0]
 | 
			
		||||
        # Используем последние значения признаков для предсказания
 | 
			
		||||
        X_new = (
 | 
			
		||||
            price_data[
 | 
			
		||||
                [
 | 
			
		||||
                    "timestamp",
 | 
			
		||||
                    "price_diff",
 | 
			
		||||
                    "volatility",
 | 
			
		||||
                    "volume",
 | 
			
		||||
                    "moving_avg_7",
 | 
			
		||||
                    "moving_avg_30",
 | 
			
		||||
                ]
 | 
			
		||||
            ]
 | 
			
		||||
            .iloc[-1]
 | 
			
		||||
            .values.reshape(1, -1)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Делаем предсказание
 | 
			
		||||
        current_price_pred = loaded_model.predict(X_new)
 | 
			
		||||
 | 
			
		||||
        return current_price_pred[0]
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"Error during inference: {str(e)}")
 | 
			
		||||
        raise
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.route("/inference/<string:token>")
 | 
			
		||||
@ -34,13 +56,17 @@ def generate_inference(token):
 | 
			
		||||
    """Generate inference for given token."""
 | 
			
		||||
    if not token or token != "ETH":
 | 
			
		||||
        error_msg = "Token is required" if not token else "Token not supported"
 | 
			
		||||
        return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
 | 
			
		||||
        return Response(
 | 
			
		||||
            json.dumps({"error": error_msg}), status=400, mimetype="application/json"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        inference = get_eth_inference()
 | 
			
		||||
        return Response(str(inference), status=200)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
 | 
			
		||||
        return Response(
 | 
			
		||||
            json.dumps({"error": str(e)}), status=500, mimetype="application/json"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.route("/update")
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										59
									
								
								model.py
									
									
									
									
									
								
							
							
						
						
									
										59
									
								
								model.py
									
									
									
									
									
								
							@ -1,15 +1,14 @@
 | 
			
		||||
import os
 | 
			
		||||
import pickle
 | 
			
		||||
import numpy as np 
 | 
			
		||||
from xgboost import XGBRegressor
 | 
			
		||||
from zipfile import ZipFile
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
import pandas as pd
 | 
			
		||||
import numpy as np
 | 
			
		||||
from sklearn.model_selection import train_test_split
 | 
			
		||||
from sklearn import linear_model
 | 
			
		||||
from updater import download_binance_monthly_data, download_binance_daily_data
 | 
			
		||||
from config import data_base_path, model_file_path
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
 | 
			
		||||
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
 | 
			
		||||
 | 
			
		||||
@ -35,19 +34,14 @@ def download_data():
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def format_data():
 | 
			
		||||
    files = sorted([x for x in os.listdir(binance_data_path)])
 | 
			
		||||
    files = sorted([x for x in os.listdir(binance_data_path) if x.endswith(".zip")])
 | 
			
		||||
 | 
			
		||||
    # No files to process
 | 
			
		||||
    if len(files) == 0:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    price_df = pd.DataFrame()
 | 
			
		||||
    for file in files:
 | 
			
		||||
        zip_file_path = os.path.join(binance_data_path, file)
 | 
			
		||||
 | 
			
		||||
        if not zip_file_path.endswith(".zip"):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        myzip = ZipFile(zip_file_path)
 | 
			
		||||
        with myzip.open(myzip.filelist[0]) as f:
 | 
			
		||||
            line = f.readline()
 | 
			
		||||
@ -70,30 +64,43 @@ def format_data():
 | 
			
		||||
        df.index.name = "date"
 | 
			
		||||
        price_df = pd.concat([price_df, df])
 | 
			
		||||
 | 
			
		||||
    price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
 | 
			
		||||
    price_df["price_diff"] = price_df["close"].diff()
 | 
			
		||||
    price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
 | 
			
		||||
    price_df["volume"] = price_df["volume"]
 | 
			
		||||
    price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
 | 
			
		||||
    price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
 | 
			
		||||
 | 
			
		||||
    # Удаляем строки с NaN значениями
 | 
			
		||||
    price_df.dropna(inplace=True)
 | 
			
		||||
 | 
			
		||||
    # Сохраняем данные
 | 
			
		||||
    price_df.sort_index().to_csv(training_price_data_path)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def train_model():
 | 
			
		||||
    # Load the eth price data
 | 
			
		||||
    price_data = pd.read_csv(training_price_data_path)
 | 
			
		||||
    df = pd.DataFrame()
 | 
			
		||||
 | 
			
		||||
    # Convert 'date' to a numerical value (timestamp) we can use for regression
 | 
			
		||||
    df["date"] = pd.to_datetime(price_data["date"])
 | 
			
		||||
    df["date"] = df["date"].map(pd.Timestamp.timestamp)
 | 
			
		||||
    # Используем дополнительные признаки
 | 
			
		||||
    x = price_data[
 | 
			
		||||
        [
 | 
			
		||||
            "timestamp",
 | 
			
		||||
            "price_diff",
 | 
			
		||||
            "volatility",
 | 
			
		||||
            "volume",
 | 
			
		||||
            "moving_avg_7",
 | 
			
		||||
            "moving_avg_30",
 | 
			
		||||
        ]
 | 
			
		||||
    ]
 | 
			
		||||
    y = price_data["close"]
 | 
			
		||||
 | 
			
		||||
    df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
 | 
			
		||||
 | 
			
		||||
    # Reshape the data to the shape expected by sklearn
 | 
			
		||||
    x = df["date"].values.reshape(-1, 1)
 | 
			
		||||
    y = df["price"].values.reshape(-1, 1)
 | 
			
		||||
 | 
			
		||||
    # Split the data into training set and test set
 | 
			
		||||
    x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
 | 
			
		||||
    x_train, x_test, y_train, y_test = train_test_split(
 | 
			
		||||
        x, y, test_size=0.2, random_state=0
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Train the model
 | 
			
		||||
    print("Training model...")
 | 
			
		||||
    model = linear_model.Lasso(alpha=0.1)
 | 
			
		||||
    model = XGBRegressor()
 | 
			
		||||
    model.fit(x_train, y_train)
 | 
			
		||||
    print("Model trained.")
 | 
			
		||||
 | 
			
		||||
@ -104,4 +111,8 @@ def train_model():
 | 
			
		||||
    with open(model_file_path, "wb") as f:
 | 
			
		||||
        pickle.dump(model, f)
 | 
			
		||||
 | 
			
		||||
    print(f"Trained model saved to {model_file_path}")
 | 
			
		||||
    print(f"Trained model saved to {model_file_path}")
 | 
			
		||||
 | 
			
		||||
    # Optional: Оценка модели
 | 
			
		||||
    y_pred = model.predict(x_test)
 | 
			
		||||
    print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")
 | 
			
		||||
@ -4,4 +4,13 @@ numpy==1.26.2
 | 
			
		||||
pandas==2.1.3
 | 
			
		||||
Requests==2.32.0
 | 
			
		||||
scikit_learn==1.3.2
 | 
			
		||||
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
 | 
			
		||||
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
 | 
			
		||||
itsdangerous
 | 
			
		||||
Jinja2
 | 
			
		||||
MarkupSafe
 | 
			
		||||
python-dateutil
 | 
			
		||||
pytz
 | 
			
		||||
scipy
 | 
			
		||||
six
 | 
			
		||||
scikit-learn
 | 
			
		||||
xgboost
 | 
			
		||||
		Reference in New Issue
	
	Block a user