111 lines
3.5 KiB
Python
111 lines
3.5 KiB
Python
import logging
|
|
import os
|
|
from typing import Any, cast
|
|
|
|
from eth_abi import decode, encode # type: ignore
|
|
from infernet_ml.utils.css_mux import (
|
|
ConvoMessage,
|
|
CSSCompletionParams,
|
|
CSSRequest,
|
|
Provider,
|
|
)
|
|
from infernet_ml.utils.service_models import InfernetInput
|
|
from infernet_ml.utils.service_models import JobLocation
|
|
from infernet_ml.workflows.inference.css_inference_workflow import CSSInferenceWorkflow
|
|
from quart import Quart, request
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def create_app() -> Quart:
|
|
app = Quart(__name__)
|
|
|
|
workflow = CSSInferenceWorkflow(
|
|
api_keys={Provider.OPENAI: os.environ["OPENAI_API_KEY"]}
|
|
)
|
|
|
|
workflow.setup()
|
|
|
|
@app.route("/")
|
|
def index() -> str:
|
|
"""
|
|
Utility endpoint to check if the service is running.
|
|
"""
|
|
return "GPT4 Example Program"
|
|
|
|
@app.route("/service_output", methods=["POST"])
|
|
async def inference() -> Any:
|
|
req_data = await request.get_json()
|
|
"""
|
|
InfernetInput has the format:
|
|
source: (0 on-chain, 1 off-chain)
|
|
data: dict[str, Any]
|
|
"""
|
|
infernet_input: InfernetInput = InfernetInput(**req_data)
|
|
|
|
match infernet_input:
|
|
case InfernetInput(source=JobLocation.OFFCHAIN):
|
|
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
|
|
case InfernetInput(source=JobLocation.ONCHAIN):
|
|
# On-chain requests are sent as a generalized hex-string which we will
|
|
# decode to the appropriate format.
|
|
(prompt,) = decode(
|
|
["string"], bytes.fromhex(cast(str, infernet_input.data))
|
|
)
|
|
case _:
|
|
raise ValueError("Invalid source")
|
|
|
|
result = workflow.inference(
|
|
CSSRequest(
|
|
provider=Provider.OPENAI,
|
|
endpoint="completions",
|
|
model="gpt-4-0613",
|
|
params=CSSCompletionParams(
|
|
messages=[
|
|
ConvoMessage(
|
|
role="system", content="you are a helpful " "assistant."
|
|
),
|
|
ConvoMessage(role="user", content=cast(str, prompt)),
|
|
]
|
|
),
|
|
)
|
|
)
|
|
|
|
match infernet_input:
|
|
case InfernetInput(destination=JobLocation.OFFCHAIN):
|
|
"""
|
|
In case of an off-chain request, the result is returned as is.
|
|
"""
|
|
return {"message": result}
|
|
case InfernetInput(destination=JobLocation.ONCHAIN):
|
|
"""
|
|
In case of an on-chain request, the result is returned in the format:
|
|
{
|
|
"raw_input": str,
|
|
"processed_input": str,
|
|
"raw_output": str,
|
|
"processed_output": str,
|
|
"proof": str,
|
|
}
|
|
refer to: https://docs.ritual.net/infernet/node/containers for more
|
|
info.
|
|
"""
|
|
return {
|
|
"raw_input": "",
|
|
"processed_input": "",
|
|
"raw_output": encode(["string"], [result]).hex(),
|
|
"processed_output": "",
|
|
"proof": "",
|
|
}
|
|
case _:
|
|
raise ValueError("Invalid destination")
|
|
|
|
return app
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
Utility to run the app locally. For development purposes only.
|
|
"""
|
|
create_app().run(port=3000)
|