feat: publishing infernet-container-starter v0.2.0

This commit is contained in:
ritual-all
2024-03-29 10:50:13 -04:00
parent 41aaa152e6
commit 4545223364
155 changed files with 6086 additions and 257 deletions

View File

@ -0,0 +1,110 @@
import logging
from typing import Any, cast, List
from eth_abi import decode, encode # type: ignore
from infernet_ml.utils.model_loader import ModelSource
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
from infernet_ml.workflows.inference.torch_inference_workflow import (
TorchInferenceWorkflow,
)
from quart import Quart, request
# Note: the IrisClassificationModel needs to be imported in this file for it to exist
# in the classpath. This is because pytorch requires the model to be in the classpath.
# Simply downloading the weights and model from the hub is not enough.
from iris_classification_model import IrisClassificationModel
log = logging.getLogger(__name__)
def create_app() -> Quart:
app = Quart(__name__)
# we are downloading the model from the hub.
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
model_source = ModelSource.HUGGINGFACE_HUB
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.torch"}
workflow = TorchInferenceWorkflow(model_source=model_source, model_args=model_args)
workflow.setup()
@app.route("/")
def index() -> str:
"""
Utility endpoint to check if the service is running.
"""
return (
f"Torch Iris Classifier Example Program: {IrisClassificationModel.__name__}"
)
@app.route("/service_output", methods=["POST"])
async def inference() -> dict[str, Any]:
req_data = await request.get_json()
"""
InfernetInput has the format:
source: (0 on-chain, 1 off-chain)
data: dict[str, Any]
"""
infernet_input: InfernetInput = InfernetInput(**req_data)
if infernet_input.source == InfernetInputSource.OFFCHAIN:
web2_input = cast(dict[str, Any], infernet_input.data)
values = cast(List[List[float]], web2_input["input"])
else:
# On-chain requests are sent as a generalized hex-string which we will
# decode to the appropriate format.
web3_input: List[int] = decode(
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
)[0]
values = [[float(v) / 1e6 for v in web3_input]]
"""
The input to the torch inference workflow needs to conform to this format:
{
"dtype": str,
"values": list[Any]
}
For more information refer to:
https://docs.ritual.net/ml-workflows/inference-workflows/torch_inference_workflow
"""
inference_result = workflow.inference({"dtype": "float", "values": values})
result = [o.detach().numpy().reshape([-1]).tolist() for o in inference_result]
if infernet_input.source == InfernetInputSource.OFFCHAIN:
"""
In case of an off-chain request, the result is returned as is.
"""
return {"result": result}
else:
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more info.
"""
predictions = cast(List[List[float]], result)
predictions_normalized = [int(p * 1e6) for p in predictions[0]]
return {
"raw_input": "",
"processed_input": "",
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
"processed_output": "",
"proof": "",
}
return app
if __name__ == "__main__":
"""
Utility to run the app locally. For development purposes only.
"""
create_app().run(port=3000)

View File

@ -0,0 +1,23 @@
import torch.nn as nn
import torch
import torch.nn.functional as F
"""
The IrisClassificationModel torch module. This is the computation graph that was used to
train the model. Refer to:
https://github.com/ritual-net/simple-ml-models/tree/main/iris_classification
"""
class IrisClassificationModel(nn.Module):
def __init__(self, input_dim: int) -> None:
super(IrisClassificationModel, self).__init__()
self.layer1 = nn.Linear(input_dim, 50)
self.layer2 = nn.Linear(50, 50)
self.layer3 = nn.Linear(50, 3)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = F.softmax(self.layer3(x), dim=1)
return x

View File

@ -0,0 +1,7 @@
quart==0.19.4
infernet_ml==0.1.0
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
huggingface-hub==0.17.3
sk2torch==1.2.0
torch==2.1.2
web3==6.15.0