feat: publishing infernet-container-starter v0.2.0
This commit is contained in:
110
projects/torch-iris/container/src/app.py
Normal file
110
projects/torch-iris/container/src/app.py
Normal file
@ -0,0 +1,110 @@
|
||||
import logging
|
||||
from typing import Any, cast, List
|
||||
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.model_loader import ModelSource
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.workflows.inference.torch_inference_workflow import (
|
||||
TorchInferenceWorkflow,
|
||||
)
|
||||
from quart import Quart, request
|
||||
|
||||
# Note: the IrisClassificationModel needs to be imported in this file for it to exist
|
||||
# in the classpath. This is because pytorch requires the model to be in the classpath.
|
||||
# Simply downloading the weights and model from the hub is not enough.
|
||||
from iris_classification_model import IrisClassificationModel
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
# we are downloading the model from the hub.
|
||||
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
|
||||
model_source = ModelSource.HUGGINGFACE_HUB
|
||||
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.torch"}
|
||||
|
||||
workflow = TorchInferenceWorkflow(model_source=model_source, model_args=model_args)
|
||||
workflow.setup()
|
||||
|
||||
@app.route("/")
|
||||
def index() -> str:
|
||||
"""
|
||||
Utility endpoint to check if the service is running.
|
||||
"""
|
||||
return (
|
||||
f"Torch Iris Classifier Example Program: {IrisClassificationModel.__name__}"
|
||||
)
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
source: (0 on-chain, 1 off-chain)
|
||||
data: dict[str, Any]
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
|
||||
"""
|
||||
The input to the torch inference workflow needs to conform to this format:
|
||||
|
||||
{
|
||||
"dtype": str,
|
||||
"values": list[Any]
|
||||
}
|
||||
|
||||
For more information refer to:
|
||||
https://docs.ritual.net/ml-workflows/inference-workflows/torch_inference_workflow
|
||||
|
||||
"""
|
||||
inference_result = workflow.inference({"dtype": "float", "values": values})
|
||||
|
||||
result = [o.detach().numpy().reshape([-1]).tolist() for o in inference_result]
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return {"result": result}
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
predictions = cast(List[List[float]], result)
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions[0]]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Utility to run the app locally. For development purposes only.
|
||||
"""
|
||||
create_app().run(port=3000)
|
@ -0,0 +1,23 @@
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
The IrisClassificationModel torch module. This is the computation graph that was used to
|
||||
train the model. Refer to:
|
||||
https://github.com/ritual-net/simple-ml-models/tree/main/iris_classification
|
||||
"""
|
||||
|
||||
|
||||
class IrisClassificationModel(nn.Module):
|
||||
def __init__(self, input_dim: int) -> None:
|
||||
super(IrisClassificationModel, self).__init__()
|
||||
self.layer1 = nn.Linear(input_dim, 50)
|
||||
self.layer2 = nn.Linear(50, 50)
|
||||
self.layer3 = nn.Linear(50, 3)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.relu(self.layer1(x))
|
||||
x = F.relu(self.layer2(x))
|
||||
x = F.softmax(self.layer3(x), dim=1)
|
||||
return x
|
7
projects/torch-iris/container/src/requirements.txt
Normal file
7
projects/torch-iris/container/src/requirements.txt
Normal file
@ -0,0 +1,7 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
huggingface-hub==0.17.3
|
||||
sk2torch==1.2.0
|
||||
torch==2.1.2
|
||||
web3==6.15.0
|
Reference in New Issue
Block a user