feat: publishing infernet-container-starter v0.2.0

This commit is contained in:
ritual-all
2024-03-29 10:50:13 -04:00
parent 41aaa152e6
commit 4545223364
155 changed files with 6086 additions and 257 deletions

View File

@ -0,0 +1,85 @@
import logging
import os
from typing import Any, cast
from eth_abi import decode, encode # type: ignore
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
from infernet_ml.workflows.inference.tgi_client_inference_workflow import (
TGIClientInferenceWorkflow,
)
from quart import Quart, request
log = logging.getLogger(__name__)
def create_app() -> Quart:
app = Quart(__name__)
workflow = TGIClientInferenceWorkflow(
server_url=cast(str, os.environ.get("TGI_SERVICE_URL"))
)
workflow.setup()
@app.route("/")
def index() -> str:
"""
Utility endpoint to check if the service is running.
"""
return "LLM Inference Service is running."
@app.route("/service_output", methods=["POST"])
async def inference() -> dict[str, Any]:
req_data = await request.get_json()
"""
InfernetInput has the format:
source: (0 on-chain, 1 off-chain)
data: dict[str, Any]
"""
infernet_input: InfernetInput = InfernetInput(**req_data)
if infernet_input.source == InfernetInputSource.OFFCHAIN:
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
else:
# On-chain requests are sent as a generalized hex-string which we will
# decode to the appropriate format.
(prompt,) = decode(
["string"], bytes.fromhex(cast(str, infernet_input.data))
)
result: dict[str, Any] = workflow.inference({"text": prompt})
if infernet_input.source == InfernetInputSource.OFFCHAIN:
"""
In case of an off-chain request, the result is returned as a dict. The
infernet node expects a dict format.
"""
return {"data": result}
else:
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more info.
"""
return {
"raw_input": "",
"processed_input": "",
"raw_output": encode(["string"], [result]).hex(),
"processed_output": "",
"proof": "",
}
return app
if __name__ == "__main__":
"""
Utility to run the app locally. For development purposes only.
"""
create_app().run(port=3000)

View File

@ -0,0 +1,6 @@
quart==0.19.4
infernet_ml==0.1.0
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
web3==6.15.0
retry2==0.9.5
text-generation==0.6.1