feat: publishing infernet-container-starter v0.2.0
This commit is contained in:
1
projects/tgi-llm/container/.gitignore
vendored
Normal file
1
projects/tgi-llm/container/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
config.json
|
25
projects/tgi-llm/container/Dockerfile
Normal file
25
projects/tgi-llm/container/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM python:3.11-slim as builder
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
ENV PYTHONDONTWRITEBYTECODE 1
|
||||
ENV PIP_NO_CACHE_DIR 1
|
||||
ENV RUNTIME docker
|
||||
ENV PYTHONPATH src
|
||||
|
||||
RUN apt-get update
|
||||
RUN apt-get install -y git curl
|
||||
|
||||
# install uv
|
||||
ADD --chmod=755 https://astral.sh/uv/install.sh /install.sh
|
||||
RUN /install.sh && rm /install.sh
|
||||
|
||||
COPY src/requirements.txt .
|
||||
|
||||
RUN /root/.cargo/bin/uv pip install --system --no-cache -r requirements.txt
|
||||
|
||||
COPY src src
|
||||
|
||||
ENTRYPOINT ["hypercorn", "app:create_app()"]
|
||||
CMD ["-b", "0.0.0.0:3000"]
|
17
projects/tgi-llm/container/Makefile
Normal file
17
projects/tgi-llm/container/Makefile
Normal file
@ -0,0 +1,17 @@
|
||||
DOCKER_ORG := ritualnetwork
|
||||
EXAMPLE_NAME := tgi-llm
|
||||
TAG := $(DOCKER_ORG)/example-$(EXAMPLE_NAME)-infernet:latest
|
||||
|
||||
.phony: build run build-multiplatform
|
||||
|
||||
build:
|
||||
@docker build -t $(TAG) .
|
||||
|
||||
run:
|
||||
docker run -p 3000:3000 --env-file tgi-llm.env $(TAG)
|
||||
|
||||
# You may need to set up a docker builder, to do so run:
|
||||
# docker buildx create --name mybuilder --bootstrap --use
|
||||
# refer to https://docs.docker.com/build/building/multi-platform/#building-multi-platform-images for more info
|
||||
build-multiplatform:
|
||||
docker buildx build --platform linux/amd64,linux/arm64 -t $(TAG) --push .
|
88
projects/tgi-llm/container/README.md
Normal file
88
projects/tgi-llm/container/README.md
Normal file
@ -0,0 +1,88 @@
|
||||
# TGI LLM
|
||||
|
||||
In this example, we're running an infernet node along with a TGI service.
|
||||
|
||||
## Deploying TGI Service
|
||||
|
||||
If you have your own TGI service running, feel free to skip this part. Otherwise,
|
||||
you can deploy the TGI service using the following command.
|
||||
|
||||
Make sure you have a machine with proper GPU support. Clone this repository &
|
||||
run the following command:
|
||||
|
||||
```bash
|
||||
make run-service project=tgi-llm service=tgi
|
||||
```
|
||||
|
||||
## Deploying Infernet Node Locally
|
||||
|
||||
Running an infernet node involves a simple configuration step & running step.
|
||||
|
||||
### Configuration
|
||||
|
||||
Copy our [sample config file](./config.sample.json) into a new file
|
||||
called `config.json`.
|
||||
|
||||
```bash
|
||||
cp config.sample.json config.json
|
||||
```
|
||||
|
||||
Then provide the `"env"` field of the `"containers"` section of the file to point to the
|
||||
TGI Service you just deployed.
|
||||
|
||||
```json
|
||||
{
|
||||
// etc.
|
||||
"containers": [
|
||||
{
|
||||
"id": "tgi-llm",
|
||||
"image": "ritualnetwork/llm_inference_service:latest",
|
||||
"external": true,
|
||||
"port": "3000",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "--bind=0.0.0.0:3000 --workers=2",
|
||||
"env": {
|
||||
"TGI_SERVICE_URL": "http://{your-service-ip}:{your-service-port}" // <- Change this to the TGI service you deployed
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Running the Infernet Node Locally
|
||||
|
||||
With that out of the way, you can now run the infernet node using the following command
|
||||
at the top-level directory of this repo:
|
||||
|
||||
```
|
||||
make deploy-container project=tgi-llm
|
||||
```
|
||||
|
||||
## Testing the Infernet Node
|
||||
|
||||
You can test the infernet node by posting a job in the node's REST api.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:4000/api/jobs" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"containers":["tgi-llm"], "data": {"prompt": "can shrimp actually fry rice?"}}'
|
||||
```
|
||||
|
||||
You can expect a response similar to the following:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "f026c7c2-7027-4c2d-b662-2b48c9433a12"
|
||||
}
|
||||
```
|
||||
|
||||
You can then check the status of the job using the following command:
|
||||
|
||||
```bash
|
||||
curl -X GET http://127.0.0.1:4000/api/jobs\?id\=f026c7c2-7027-4c2d-b662-2b48c9433a12
|
||||
[{"id":"f026c7c2-7027-4c2d-b662-2b48c9433a12","result":{"container":"tgi-llm","output":{"output":"\n\nI\u2019m not sure if this is a real question or not, but I\u2019m"}},"status":"success"}]
|
||||
```
|
||||
|
||||
Congratulations! You've successfully ran an infernet node with a TGI service.
|
52
projects/tgi-llm/container/config.sample.json
Normal file
52
projects/tgi-llm/container/config.sample.json
Normal file
@ -0,0 +1,52 @@
|
||||
{
|
||||
"log_path": "infernet_node.log",
|
||||
"server": {
|
||||
"port": 4000
|
||||
},
|
||||
"chain": {
|
||||
"enabled": true,
|
||||
"trail_head_blocks": 0,
|
||||
"rpc_url": "http://host.docker.internal:8545",
|
||||
"coordinator_address": "0x5FbDB2315678afecb367f032d93F642f64180aa3",
|
||||
"wallet": {
|
||||
"max_gas_limit": 4000000,
|
||||
"private_key": "0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d"
|
||||
}
|
||||
},
|
||||
"startup_wait": 1.0,
|
||||
"docker": {
|
||||
"username": "your-username",
|
||||
"password": ""
|
||||
},
|
||||
"redis": {
|
||||
"host": "redis",
|
||||
"port": 6379
|
||||
},
|
||||
"forward_stats": true,
|
||||
"containers": [
|
||||
{
|
||||
"id": "tgi-llm",
|
||||
"image": "ritualnetwork/example-tgi-llm-infernet:latest",
|
||||
"external": true,
|
||||
"port": "3000",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "--bind=0.0.0.0:3000 --workers=2",
|
||||
"env": {
|
||||
"TGI_SERVICE_URL": "http://{your_service_ip}:{your_service_port}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "anvil-node",
|
||||
"image": "ritualnetwork/infernet-anvil:0.0.0",
|
||||
"external": true,
|
||||
"port": "8545",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "",
|
||||
"env": {}
|
||||
}
|
||||
]
|
||||
}
|
85
projects/tgi-llm/container/src/app.py
Normal file
85
projects/tgi-llm/container/src/app.py
Normal file
@ -0,0 +1,85 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, cast
|
||||
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.workflows.inference.tgi_client_inference_workflow import (
|
||||
TGIClientInferenceWorkflow,
|
||||
)
|
||||
from quart import Quart, request
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
|
||||
workflow = TGIClientInferenceWorkflow(
|
||||
server_url=cast(str, os.environ.get("TGI_SERVICE_URL"))
|
||||
)
|
||||
|
||||
workflow.setup()
|
||||
|
||||
@app.route("/")
|
||||
def index() -> str:
|
||||
"""
|
||||
Utility endpoint to check if the service is running.
|
||||
"""
|
||||
return "LLM Inference Service is running."
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
source: (0 on-chain, 1 off-chain)
|
||||
data: dict[str, Any]
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
(prompt,) = decode(
|
||||
["string"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)
|
||||
|
||||
result: dict[str, Any] = workflow.inference({"text": prompt})
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as a dict. The
|
||||
infernet node expects a dict format.
|
||||
"""
|
||||
return {"data": result}
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["string"], [result]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Utility to run the app locally. For development purposes only.
|
||||
"""
|
||||
create_app().run(port=3000)
|
6
projects/tgi-llm/container/src/requirements.txt
Normal file
6
projects/tgi-llm/container/src/requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
web3==6.15.0
|
||||
retry2==0.9.5
|
||||
text-generation==0.6.1
|
1
projects/tgi-llm/container/tgi-llm.env.sample
Normal file
1
projects/tgi-llm/container/tgi-llm.env.sample
Normal file
@ -0,0 +1 @@
|
||||
TGI_SERVICE_URL=http://{your-service-ip}:{your-service-port}
|
Reference in New Issue
Block a user