feat: publishing infernet-container-starter v0.2.0

This commit is contained in:
ritual-all
2024-03-29 10:50:13 -04:00
parent 41aaa152e6
commit 4545223364
155 changed files with 6086 additions and 257 deletions

View File

@ -0,0 +1,3 @@
wallet
config.json
**/keyfile-arweave.json

View File

@ -0,0 +1,27 @@
FROM python:3.11-slim as builder
WORKDIR /app
ENV PYTHONUNBUFFERED 1
ENV PYTHONDONTWRITEBYTECODE 1
ENV PIP_NO_CACHE_DIR 1
ENV RUNTIME docker
ENV PYTHONPATH src
RUN apt-get update
RUN apt-get install -y git curl
# install uv
ADD --chmod=755 https://astral.sh/uv/install.sh /install.sh
RUN /install.sh && rm /install.sh
COPY src/requirements.txt .
RUN /root/.cargo/bin/uv pip install --system --no-cache -r requirements.txt
copy wallet wallet
COPY src src
ENTRYPOINT ["hypercorn", "app:create_app()"]
CMD ["-b", "0.0.0.0:3000"]

View File

@ -0,0 +1,23 @@
DOCKER_ORG := ritualnetwork
EXAMPLE_NAME := prompt-to-nft
TAG := $(DOCKER_ORG)/example-$(EXAMPLE_NAME)-infernet:latest
.phony: build run build-multiplatform
build:
ifdef CI
mkdir -p wallet # in CI we don't have a wallet directory. This enables to bypass that and ensure that the image
# is built successfully
endif
@docker build -t $(TAG) .
wallet_dir ?= /app/wallet
run:
docker run -p 3000:3000 -v ./wallet:$(wallet_dir) --env-file prompt_to_nft.env $(TAG)
# You may need to set up a docker builder, to do so run:
# docker buildx create --name mybuilder --bootstrap --use
# refer to https://docs.docker.com/build/building/multi-platform/#building-multi-platform-images for more info
build-multiplatform:
docker buildx build --platform linux/amd64,linux/arm64 -t $(TAG) --push .

View File

@ -0,0 +1,91 @@
# Prompt-to-NFT Container
## Overview
## Building & Running the Container in Isolation
Note that this container is meant to be started by the infernet-node. For development &
Testing purposes, you can run the container in isolation using the following commands.
### Building the Container
Simply run the following command to build the container.
```bash
make build
```
Consult the [Makefile](./Makefile) for the build command.
### Adding Arweave File
Add your arweave wallet file
### Running the Container
To run the container, you can use the following command:
```bash
make run
```
## Testing the Container
Run the following command to run an inference:
```bash
curl -X POST http://127.0.0.1:3000/service_output \
-H "Content-Type: application/json" \
-d '{"source":1, "data": {"prompt": "a golden retriever skiing"}}'
```
#### Note Regarding the Input
The inputs provided above correspond to an iris flower with the following
characteristics. Refer to the
1. Sepal Length: `5.5cm`
2. Sepal Width: `2.4cm`
3. Petal Length: `3.8cm`
4. Petal Width: `1.1cm`
Putting this input into a vector and scaling it, we get the following scaled input:
```python
[1.0380048, 0.5586108, 1.1037828, 1.712096]
```
Refer
to [this function in the model's repository](https://github.com/ritual-net/simple-ml-models/blob/03ebc6fb15d33efe20b7782505b1a65ce3975222/iris_classification/iris_inference_pytorch.py#L13)
for more information on how the input is scaled.
For more context on the Iris dataset, refer to
the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
### Output
By running the above command, you should get a response similar to the following:
```json
[
[
[
0.0010151526657864451,
0.014391022734344006,
0.9845937490463257
]
]
]
```
The response corresponds to the model's prediction for each of the classes:
```python
['setosa', 'versicolor', 'virginica']
```
In this case, the model predicts that the input corresponds to the class `virginica`with
a probability of `0.9845937490463257`(~98.5%).

View File

@ -0,0 +1,53 @@
{
"log_path": "infernet_node.log",
"server": {
"port": 4000
},
"chain": {
"enabled": true,
"trail_head_blocks": 0,
"rpc_url": "http://host.docker.internal:8545",
"coordinator_address": "0x5FbDB2315678afecb367f032d93F642f64180aa3",
"wallet": {
"max_gas_limit": 4000000,
"private_key": "0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d"
}
},
"startup_wait": 1.0,
"docker": {
"username": "your-username",
"password": ""
},
"redis": {
"host": "redis",
"port": 6379
},
"forward_stats": true,
"containers": [
{
"id": "prompt-to-nft",
"image": "ritualnetwork/example-prompt-to-nft-infernet:latest",
"external": true,
"port": "3000",
"allowed_delegate_addresses": [],
"allowed_addresses": [],
"allowed_ips": [],
"command": "--bind=0.0.0.0:3000 --workers=2",
"env": {
"ARWEAVE_WALLET_FILE_PATH": "wallet/keyfile-arweave.json",
"IMAGE_GEN_SERVICE_URL": "http://your.services.ip:port"
}
},
{
"id": "anvil-node",
"image": "ritualnetwork/infernet-anvil:0.0.0",
"external": true,
"port": "8545",
"allowed_delegate_addresses": [],
"allowed_addresses": [],
"allowed_ips": [],
"command": "",
"env": {}
}
]
}

View File

@ -0,0 +1,2 @@
ARWEAVE_WALLET_FILE_PATH=
IMAGE_GEN_SERVICE_URL=

View File

@ -0,0 +1,109 @@
import logging
import os
from pathlib import Path
from typing import Any, cast
import aiohttp
from eth_abi import decode, encode # type: ignore
from infernet_ml.utils.arweave import upload, load_wallet
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
from quart import Quart, request
log = logging.getLogger(__name__)
async def run_inference(prompt: str, output_path: str) -> None:
async with aiohttp.ClientSession() as session:
app_url = os.getenv("IMAGE_GEN_SERVICE_URL")
async with session.post(
f"{app_url}/service_output",
json={
"prompt": prompt,
},
) as response:
image_bytes = await response.read()
with open(output_path, "wb") as f:
f.write(image_bytes)
def ensure_env_vars() -> None:
if not os.getenv("IMAGE_GEN_SERVICE_URL"):
raise ValueError("IMAGE_GEN_SERVICE_URL environment variable not set")
load_wallet()
def create_app() -> Quart:
app = Quart(__name__)
ensure_env_vars()
@app.route("/")
def index() -> str:
"""
Utility endpoint to check if the service is running.
"""
return "Stable Diffusion Example Program"
@app.route("/service_output", methods=["POST"])
async def inference() -> dict[str, Any]:
req_data = await request.get_json()
"""
InfernetInput has the format:
source: (0 on-chain, 1 off-chain)
data: dict[str, Any]
"""
infernet_input: InfernetInput = InfernetInput(**req_data)
temp_file = "image.png"
if infernet_input.source == InfernetInputSource.OFFCHAIN:
prompt: str = cast(dict[str, str], infernet_input.data)["prompt"]
else:
# On-chain requests are sent as a generalized hex-string which we will
# decode to the appropriate format.
(prompt, mintTo) = decode(
["string", "address"], bytes.fromhex(cast(str, infernet_input.data))
)
log.info("mintTo: %s", mintTo)
log.info("prompt: %s", prompt)
# run the inference and download the image to a temp file
await run_inference(prompt, temp_file)
tx = upload(Path(temp_file), {"Content-Type": "image/png"})
if infernet_input.source == InfernetInputSource.OFFCHAIN:
"""
In case of an off-chain request, the result is returned as is.
"""
return {
"prompt": prompt,
"hash": tx.id,
"image_url": f"https://arweave.net/{tx.id}",
}
else:
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more info.
"""
return {
"raw_input": infernet_input.data,
"processed_input": "",
"raw_output": encode(["string"], [tx.id]).hex(),
"processed_output": "",
"proof": "",
}
return app
if __name__ == "__main__":
"""
Utility to run the app locally. For development purposes only.
"""
create_app().run(host="0.0.0.0", port=3000)

View File

@ -0,0 +1,5 @@
quart==0.19.4
infernet_ml==0.1.0
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
web3==6.15.0
tqdm==4.66.1