infernet-1.0.0 update

This commit is contained in:
arshan-ritual
2024-06-06 13:18:48 -04:00
parent 2a11fd3953
commit 40a6c590da
98 changed files with 879 additions and 506 deletions

View File

@ -1,12 +1,18 @@
import logging
from typing import Any, cast, List
from infernet_ml.utils.common_types import TensorInput
import numpy as np
from eth_abi import decode, encode # type: ignore
from infernet_ml.utils.model_loader import ModelSource
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
from infernet_ml.utils.model_loader import (
HFLoadArgs,
ModelSource,
)
from infernet_ml.utils.service_models import InfernetInput, JobLocation
from infernet_ml.workflows.inference.onnx_inference_workflow import (
ONNXInferenceWorkflow,
ONNXInferenceInput,
ONNXInferenceResult,
)
from quart import Quart, request
from quart.json.provider import DefaultJSONProvider
@ -29,10 +35,11 @@ def create_app() -> Quart:
app = Quart(__name__)
# we are downloading the model from the hub.
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
model_source = ModelSource.HUGGINGFACE_HUB
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.onnx"}
workflow = ONNXInferenceWorkflow(model_source=model_source, model_args=model_args)
workflow = ONNXInferenceWorkflow(
model_source=ModelSource.HUGGINGFACE_HUB,
load_args=HFLoadArgs(repo_id="Ritual-Net/iris-dataset", filename="iris.onnx"),
)
workflow.setup()
@app.route("/")
@ -43,7 +50,7 @@ def create_app() -> Quart:
return "ONNX Iris Classifier Example Program"
@app.route("/service_output", methods=["POST"])
async def inference() -> dict[str, Any]:
async def inference() -> Any:
req_data = await request.get_json()
"""
InfernetInput has the format:
@ -52,50 +59,56 @@ def create_app() -> Quart:
"""
infernet_input: InfernetInput = InfernetInput(**req_data)
if infernet_input.source == InfernetInputSource.OFFCHAIN:
web2_input = cast(dict[str, Any], infernet_input.data)
values = cast(List[List[float]], web2_input["input"])
else:
# On-chain requests are sent as a generalized hex-string which we will
# decode to the appropriate format.
web3_input: List[int] = decode(
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
)[0]
values = [[float(v) / 1e6 for v in web3_input]]
match infernet_input:
case InfernetInput(source=JobLocation.OFFCHAIN):
web2_input = cast(dict[str, Any], infernet_input.data)
values = cast(List[List[float]], web2_input["input"])
case InfernetInput(source=JobLocation.ONCHAIN):
web3_input: List[int] = decode(
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
)[0]
values = [[float(v) / 1e6 for v in web3_input]]
"""
The input to the onnx inference workflow needs to conform to ONNX runtime's
input_feed format. For more information refer to:
https://docs.ritual.net/ml-workflows/inference-workflows/onnx_inference_workflow
"""
result: dict[str, Any] = workflow.inference({"input": values})
_input = ONNXInferenceInput(
inputs={"input": TensorInput(shape=(1, 4), dtype="float", values=values)},
)
result: ONNXInferenceResult = workflow.inference(_input)
if infernet_input.source == InfernetInputSource.OFFCHAIN:
"""
In case of an off-chain request, the result is returned as is.
"""
return result
else:
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more info.
"""
predictions = cast(List[List[List[float]]], result)
predictions_normalized = [int(p * 1e6) for p in predictions[0][0]]
return {
"raw_input": "",
"processed_input": "",
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
"processed_output": "",
"proof": "",
}
match infernet_input:
case InfernetInput(destination=JobLocation.OFFCHAIN):
"""
In case of an off-chain request, the result is returned as is.
"""
return result
case InfernetInput(destination=JobLocation.ONCHAIN):
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more
info.
"""
predictions = result[0]
predictions_normalized = [int(p * 1e6) for p in predictions.values]
return {
"raw_input": "",
"processed_input": "",
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
"processed_output": "",
"proof": "",
}
case _:
raise ValueError("Invalid destination")
return app

View File

@ -1,7 +1,4 @@
quart==0.19.4
infernet_ml==0.1.0
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
infernet-ml==1.0.0
infernet-ml[onnx_inference]==1.0.0
web3==6.15.0
onnx==1.15.0
onnxruntime==1.16.3
torch==2.1.2