infernet-1.0.0 update
This commit is contained in:
@ -1,12 +1,18 @@
|
||||
import logging
|
||||
from typing import Any, cast, List
|
||||
|
||||
from infernet_ml.utils.common_types import TensorInput
|
||||
import numpy as np
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.model_loader import ModelSource
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.utils.model_loader import (
|
||||
HFLoadArgs,
|
||||
ModelSource,
|
||||
)
|
||||
from infernet_ml.utils.service_models import InfernetInput, JobLocation
|
||||
from infernet_ml.workflows.inference.onnx_inference_workflow import (
|
||||
ONNXInferenceWorkflow,
|
||||
ONNXInferenceInput,
|
||||
ONNXInferenceResult,
|
||||
)
|
||||
from quart import Quart, request
|
||||
from quart.json.provider import DefaultJSONProvider
|
||||
@ -29,10 +35,11 @@ def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
# we are downloading the model from the hub.
|
||||
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
|
||||
model_source = ModelSource.HUGGINGFACE_HUB
|
||||
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.onnx"}
|
||||
|
||||
workflow = ONNXInferenceWorkflow(model_source=model_source, model_args=model_args)
|
||||
workflow = ONNXInferenceWorkflow(
|
||||
model_source=ModelSource.HUGGINGFACE_HUB,
|
||||
load_args=HFLoadArgs(repo_id="Ritual-Net/iris-dataset", filename="iris.onnx"),
|
||||
)
|
||||
workflow.setup()
|
||||
|
||||
@app.route("/")
|
||||
@ -43,7 +50,7 @@ def create_app() -> Quart:
|
||||
return "ONNX Iris Classifier Example Program"
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
async def inference() -> Any:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
@ -52,50 +59,56 @@ def create_app() -> Quart:
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
match infernet_input:
|
||||
case InfernetInput(source=JobLocation.OFFCHAIN):
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
case InfernetInput(source=JobLocation.ONCHAIN):
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
|
||||
"""
|
||||
The input to the onnx inference workflow needs to conform to ONNX runtime's
|
||||
input_feed format. For more information refer to:
|
||||
https://docs.ritual.net/ml-workflows/inference-workflows/onnx_inference_workflow
|
||||
"""
|
||||
result: dict[str, Any] = workflow.inference({"input": values})
|
||||
_input = ONNXInferenceInput(
|
||||
inputs={"input": TensorInput(shape=(1, 4), dtype="float", values=values)},
|
||||
)
|
||||
result: ONNXInferenceResult = workflow.inference(_input)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return result
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
predictions = cast(List[List[List[float]]], result)
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions[0][0]]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
match infernet_input:
|
||||
case InfernetInput(destination=JobLocation.OFFCHAIN):
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return result
|
||||
case InfernetInput(destination=JobLocation.ONCHAIN):
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more
|
||||
info.
|
||||
"""
|
||||
predictions = result[0]
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions.values]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
case _:
|
||||
raise ValueError("Invalid destination")
|
||||
|
||||
return app
|
||||
|
||||
|
@ -1,7 +1,4 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
infernet-ml==1.0.0
|
||||
infernet-ml[onnx_inference]==1.0.0
|
||||
web3==6.15.0
|
||||
onnx==1.15.0
|
||||
onnxruntime==1.16.3
|
||||
torch==2.1.2
|
||||
|
Reference in New Issue
Block a user