infernet-1.0.0 update
This commit is contained in:
@ -7,12 +7,15 @@ ENV PYTHONDONTWRITEBYTECODE 1
|
||||
ENV PIP_NO_CACHE_DIR 1
|
||||
ENV RUNTIME docker
|
||||
ENV PYTHONPATH src
|
||||
ARG index_url
|
||||
ENV UV_EXTRA_INDEX_URL ${index_url}
|
||||
|
||||
RUN apt-get update
|
||||
RUN apt-get install -y git curl
|
||||
|
||||
# install uv
|
||||
ADD --chmod=755 https://astral.sh/uv/install.sh /install.sh
|
||||
ADD https://astral.sh/uv/install.sh /install.sh
|
||||
RUN chmod 755 /install.sh
|
||||
RUN /install.sh && rm /install.sh
|
||||
|
||||
COPY src/requirements.txt .
|
||||
|
@ -5,7 +5,7 @@ TAG := $(DOCKER_ORG)/example-$(EXAMPLE_NAME)-infernet:latest
|
||||
.phony: build run build-multiplatform
|
||||
|
||||
build:
|
||||
@docker build -t $(TAG) .
|
||||
@docker build -t $(TAG) --build-arg index_url=$(index_url) .
|
||||
|
||||
run:
|
||||
docker run -p 3000:3000 $(TAG)
|
||||
|
@ -8,9 +8,9 @@ repository.
|
||||
## Overview
|
||||
|
||||
We're making use of
|
||||
the [ONNXInferenceWorkflow](https://github.com/ritual-net/infernet-ml-internal/blob/main/src/ml/workflows/inference/onnx_inference_workflow.py)
|
||||
the [ONNXInferenceWorkflow](https://github.com/ritual-net/infernet-ml/blob/main/src/ml/workflows/inference/onnx_inference_workflow.py)
|
||||
class to run the model. This is one of many workflows that we currently support in our
|
||||
[infernet-ml](https://github.com/ritual-net/infernet-ml-internal). Consult the library's
|
||||
[infernet-ml](https://github.com/ritual-net/infernet-ml). Consult the library's
|
||||
documentation for more info on workflows that
|
||||
are supported.
|
||||
|
||||
|
@ -7,7 +7,7 @@
|
||||
"enabled": true,
|
||||
"trail_head_blocks": 0,
|
||||
"rpc_url": "http://host.docker.internal:8545",
|
||||
"coordinator_address": "0x5FbDB2315678afecb367f032d93F642f64180aa3",
|
||||
"registry_address": "0x663F3ad617193148711d28f5334eE4Ed07016602",
|
||||
"wallet": {
|
||||
"max_gas_limit": 4000000,
|
||||
"private_key": "0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d"
|
||||
@ -23,6 +23,10 @@
|
||||
"port": 6379
|
||||
},
|
||||
"forward_stats": true,
|
||||
"snapshot_sync": {
|
||||
"sleep": 3,
|
||||
"batch_size": 100
|
||||
},
|
||||
"containers": [
|
||||
{
|
||||
"id": "onnx-iris",
|
||||
@ -33,18 +37,8 @@
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "--bind=0.0.0.0:3000 --workers=2",
|
||||
"env": {}
|
||||
},
|
||||
{
|
||||
"id": "anvil-node",
|
||||
"image": "ritualnetwork/infernet-anvil:0.0.0",
|
||||
"external": true,
|
||||
"port": "8545",
|
||||
"allowed_delegate_addresses": [],
|
||||
"allowed_addresses": [],
|
||||
"allowed_ips": [],
|
||||
"command": "",
|
||||
"env": {}
|
||||
"env": {},
|
||||
"accepted_payments": {}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@ -1,12 +1,18 @@
|
||||
import logging
|
||||
from typing import Any, cast, List
|
||||
|
||||
from infernet_ml.utils.common_types import TensorInput
|
||||
import numpy as np
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.model_loader import ModelSource
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.utils.model_loader import (
|
||||
HFLoadArgs,
|
||||
ModelSource,
|
||||
)
|
||||
from infernet_ml.utils.service_models import InfernetInput, JobLocation
|
||||
from infernet_ml.workflows.inference.onnx_inference_workflow import (
|
||||
ONNXInferenceWorkflow,
|
||||
ONNXInferenceInput,
|
||||
ONNXInferenceResult,
|
||||
)
|
||||
from quart import Quart, request
|
||||
from quart.json.provider import DefaultJSONProvider
|
||||
@ -29,10 +35,11 @@ def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
# we are downloading the model from the hub.
|
||||
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
|
||||
model_source = ModelSource.HUGGINGFACE_HUB
|
||||
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.onnx"}
|
||||
|
||||
workflow = ONNXInferenceWorkflow(model_source=model_source, model_args=model_args)
|
||||
workflow = ONNXInferenceWorkflow(
|
||||
model_source=ModelSource.HUGGINGFACE_HUB,
|
||||
load_args=HFLoadArgs(repo_id="Ritual-Net/iris-dataset", filename="iris.onnx"),
|
||||
)
|
||||
workflow.setup()
|
||||
|
||||
@app.route("/")
|
||||
@ -43,7 +50,7 @@ def create_app() -> Quart:
|
||||
return "ONNX Iris Classifier Example Program"
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
async def inference() -> Any:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
@ -52,50 +59,56 @@ def create_app() -> Quart:
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
match infernet_input:
|
||||
case InfernetInput(source=JobLocation.OFFCHAIN):
|
||||
web2_input = cast(dict[str, Any], infernet_input.data)
|
||||
values = cast(List[List[float]], web2_input["input"])
|
||||
case InfernetInput(source=JobLocation.ONCHAIN):
|
||||
web3_input: List[int] = decode(
|
||||
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)[0]
|
||||
values = [[float(v) / 1e6 for v in web3_input]]
|
||||
|
||||
"""
|
||||
The input to the onnx inference workflow needs to conform to ONNX runtime's
|
||||
input_feed format. For more information refer to:
|
||||
https://docs.ritual.net/ml-workflows/inference-workflows/onnx_inference_workflow
|
||||
"""
|
||||
result: dict[str, Any] = workflow.inference({"input": values})
|
||||
_input = ONNXInferenceInput(
|
||||
inputs={"input": TensorInput(shape=(1, 4), dtype="float", values=values)},
|
||||
)
|
||||
result: ONNXInferenceResult = workflow.inference(_input)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return result
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
predictions = cast(List[List[List[float]]], result)
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions[0][0]]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
match infernet_input:
|
||||
case InfernetInput(destination=JobLocation.OFFCHAIN):
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return result
|
||||
case InfernetInput(destination=JobLocation.ONCHAIN):
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more
|
||||
info.
|
||||
"""
|
||||
predictions = result[0]
|
||||
predictions_normalized = [int(p * 1e6) for p in predictions.values]
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
case _:
|
||||
raise ValueError("Invalid destination")
|
||||
|
||||
return app
|
||||
|
||||
|
@ -1,7 +1,4 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
infernet-ml==1.0.0
|
||||
infernet-ml[onnx_inference]==1.0.0
|
||||
web3==6.15.0
|
||||
onnx==1.15.0
|
||||
onnxruntime==1.16.3
|
||||
torch==2.1.2
|
||||
|
Submodule projects/onnx-iris/contracts/lib/forge-std updated: e4aef94c17...52715a217d
Submodule projects/onnx-iris/contracts/lib/infernet-sdk updated: 2d04a7f5ed...8e6cd6f5cb
@ -10,7 +10,7 @@ contract CallContract is Script {
|
||||
uint256 deployerPrivateKey = vm.envUint("PRIVATE_KEY");
|
||||
vm.startBroadcast(deployerPrivateKey);
|
||||
|
||||
IrisClassifier irisClassifier = IrisClassifier(0x663F3ad617193148711d28f5334eE4Ed07016602);
|
||||
IrisClassifier irisClassifier = IrisClassifier(0x13D69Cf7d6CE4218F646B759Dcf334D82c023d8e);
|
||||
|
||||
irisClassifier.classifyIris();
|
||||
|
||||
|
@ -14,9 +14,9 @@ contract Deploy is Script {
|
||||
address deployerAddress = vm.addr(deployerPrivateKey);
|
||||
console2.log("Loaded deployer: ", deployerAddress);
|
||||
|
||||
address coordinator = 0x5FbDB2315678afecb367f032d93F642f64180aa3;
|
||||
address registry = 0x663F3ad617193148711d28f5334eE4Ed07016602;
|
||||
// Create consumer
|
||||
IrisClassifier classifier = new IrisClassifier(coordinator);
|
||||
IrisClassifier classifier = new IrisClassifier(registry);
|
||||
console2.log("Deployed IrisClassifier: ", address(classifier));
|
||||
|
||||
// Execute
|
||||
|
@ -14,7 +14,7 @@ contract IrisClassifier is CallbackConsumer {
|
||||
"| | \\ \\ _| |_ | | | |__| / ____ \\| |____\n"
|
||||
"|_| \\_\\_____| |_| \\____/_/ \\_\\______|\n\n";
|
||||
|
||||
constructor(address coordinator) CallbackConsumer(coordinator) {}
|
||||
constructor(address registry) CallbackConsumer(registry) {}
|
||||
|
||||
function classifyIris() public {
|
||||
/// @dev Iris data is in the following format:
|
||||
@ -38,9 +38,11 @@ contract IrisClassifier is CallbackConsumer {
|
||||
_requestCompute(
|
||||
"onnx-iris",
|
||||
abi.encode(iris_data),
|
||||
20 gwei,
|
||||
1_000_000,
|
||||
1
|
||||
1, // redundancy
|
||||
address(0), // paymentToken
|
||||
0, // paymentAmount
|
||||
address(0), // wallet
|
||||
address(0) // prover
|
||||
);
|
||||
}
|
||||
|
||||
@ -51,7 +53,9 @@ contract IrisClassifier is CallbackConsumer {
|
||||
address node,
|
||||
bytes calldata input,
|
||||
bytes calldata output,
|
||||
bytes calldata proof
|
||||
bytes calldata proof,
|
||||
bytes32 containerId,
|
||||
uint256 index
|
||||
) internal override {
|
||||
console2.log(EXTREMELY_COOL_BANNER);
|
||||
(bytes memory raw_output, bytes memory processed_output) = abi.decode(output, (bytes, bytes));
|
||||
|
@ -195,7 +195,7 @@ In your anvil logs you should see the following:
|
||||
eth_getTransactionReceipt
|
||||
|
||||
Transaction: 0xeed605eacdace39a48635f6d14215b386523766f80a113b4484f542d862889a4
|
||||
Contract created: 0x663f3ad617193148711d28f5334ee4ed07016602
|
||||
Contract created: 0x13D69Cf7d6CE4218F646B759Dcf334D82c023d8e
|
||||
Gas used: 714269
|
||||
|
||||
Block Number: 1
|
||||
@ -206,7 +206,7 @@ eth_blockNumber
|
||||
```
|
||||
|
||||
beautiful, we can see that a new contract has been created
|
||||
at `0x663f3ad617193148711d28f5334ee4ed07016602`. That's the address of
|
||||
at `0x663F3ad617193148711d28f5334eE4Ed07016602`. That's the address of
|
||||
the `IrisClassifier` contract. We are now going to call this contract. To do so,
|
||||
we are using
|
||||
the [CallContract.s.sol](contracts/script/CallContract.s.sol)
|
||||
|
Reference in New Issue
Block a user