infernet-1.0.0 update
This commit is contained in:
@ -1,8 +1,16 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, cast
|
||||
|
||||
from eth_abi import decode, encode # type: ignore
|
||||
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||||
from infernet_ml.utils.css_mux import (
|
||||
ConvoMessage,
|
||||
CSSCompletionParams,
|
||||
CSSRequest,
|
||||
Provider,
|
||||
)
|
||||
from infernet_ml.utils.service_models import InfernetInput
|
||||
from infernet_ml.utils.service_models import JobLocation
|
||||
from infernet_ml.workflows.inference.css_inference_workflow import CSSInferenceWorkflow
|
||||
from quart import Quart, request
|
||||
|
||||
@ -12,7 +20,9 @@ log = logging.getLogger(__name__)
|
||||
def create_app() -> Quart:
|
||||
app = Quart(__name__)
|
||||
|
||||
workflow = CSSInferenceWorkflow(provider="OPENAI", endpoint="completions")
|
||||
workflow = CSSInferenceWorkflow(
|
||||
api_keys={Provider.OPENAI: os.environ["OPENAI_API_KEY"]}
|
||||
)
|
||||
|
||||
workflow.setup()
|
||||
|
||||
@ -24,7 +34,7 @@ def create_app() -> Quart:
|
||||
return "GPT4 Example Program"
|
||||
|
||||
@app.route("/service_output", methods=["POST"])
|
||||
async def inference() -> dict[str, Any]:
|
||||
async def inference() -> Any:
|
||||
req_data = await request.get_json()
|
||||
"""
|
||||
InfernetInput has the format:
|
||||
@ -33,52 +43,62 @@ def create_app() -> Quart:
|
||||
"""
|
||||
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
|
||||
else:
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
(prompt,) = decode(
|
||||
["string"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)
|
||||
match infernet_input:
|
||||
case InfernetInput(source=JobLocation.OFFCHAIN):
|
||||
prompt = cast(dict[str, Any], infernet_input.data).get("prompt")
|
||||
case InfernetInput(source=JobLocation.ONCHAIN):
|
||||
# On-chain requests are sent as a generalized hex-string which we will
|
||||
# decode to the appropriate format.
|
||||
(prompt,) = decode(
|
||||
["string"], bytes.fromhex(cast(str, infernet_input.data))
|
||||
)
|
||||
case _:
|
||||
raise ValueError("Invalid source")
|
||||
|
||||
result: dict[str, Any] = workflow.inference(
|
||||
{
|
||||
"model": "gpt-4-0613",
|
||||
"params": {
|
||||
"endpoint": "completions",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": prompt},
|
||||
],
|
||||
},
|
||||
}
|
||||
result = workflow.inference(
|
||||
CSSRequest(
|
||||
provider=Provider.OPENAI,
|
||||
endpoint="completions",
|
||||
model="gpt-4-0613",
|
||||
params=CSSCompletionParams(
|
||||
messages=[
|
||||
ConvoMessage(
|
||||
role="system", content="you are a helpful " "assistant."
|
||||
),
|
||||
ConvoMessage(role="user", content=cast(str, prompt)),
|
||||
]
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return {"message": result}
|
||||
else:
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||||
"""
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["string"], [result]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
match infernet_input:
|
||||
case InfernetInput(destination=JobLocation.OFFCHAIN):
|
||||
"""
|
||||
In case of an off-chain request, the result is returned as is.
|
||||
"""
|
||||
return {"message": result}
|
||||
case InfernetInput(destination=JobLocation.ONCHAIN):
|
||||
"""
|
||||
In case of an on-chain request, the result is returned in the format:
|
||||
{
|
||||
"raw_input": str,
|
||||
"processed_input": str,
|
||||
"raw_output": str,
|
||||
"processed_output": str,
|
||||
"proof": str,
|
||||
}
|
||||
refer to: https://docs.ritual.net/infernet/node/containers for more
|
||||
info.
|
||||
"""
|
||||
return {
|
||||
"raw_input": "",
|
||||
"processed_input": "",
|
||||
"raw_output": encode(["string"], [result]).hex(),
|
||||
"processed_output": "",
|
||||
"proof": "",
|
||||
}
|
||||
case _:
|
||||
raise ValueError("Invalid destination")
|
||||
|
||||
return app
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
quart==0.19.4
|
||||
infernet_ml==0.1.0
|
||||
PyArweave @ git+https://github.com/ritual-net/pyarweave.git
|
||||
infernet-ml==1.0.0
|
||||
infernet-ml[css_inference]==1.0.0
|
||||
web3==6.15.0
|
||||
retry2==0.9.5
|
||||
|
Reference in New Issue
Block a user