108 lines
3.8 KiB
Python
108 lines
3.8 KiB
Python
|
import logging
|
||
|
from typing import Any, cast, List
|
||
|
|
||
|
import numpy as np
|
||
|
from eth_abi import decode, encode # type: ignore
|
||
|
from infernet_ml.utils.model_loader import ModelSource
|
||
|
from infernet_ml.utils.service_models import InfernetInput, InfernetInputSource
|
||
|
from infernet_ml.workflows.inference.onnx_inference_workflow import (
|
||
|
ONNXInferenceWorkflow,
|
||
|
)
|
||
|
from quart import Quart, request
|
||
|
from quart.json.provider import DefaultJSONProvider
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class NumpyJsonEncodingProvider(DefaultJSONProvider):
|
||
|
@staticmethod
|
||
|
def default(obj: Any) -> Any:
|
||
|
if isinstance(obj, np.ndarray):
|
||
|
# Convert NumPy arrays to list
|
||
|
return obj.tolist()
|
||
|
# fallback to default JSON encoding
|
||
|
return DefaultJSONProvider.default(obj)
|
||
|
|
||
|
|
||
|
def create_app() -> Quart:
|
||
|
Quart.json_provider_class = NumpyJsonEncodingProvider
|
||
|
app = Quart(__name__)
|
||
|
# we are downloading the model from the hub.
|
||
|
# model repo is located at: https://huggingface.co/Ritual-Net/iris-dataset
|
||
|
model_source = ModelSource.HUGGINGFACE_HUB
|
||
|
model_args = {"repo_id": "Ritual-Net/iris-dataset", "filename": "iris.onnx"}
|
||
|
|
||
|
workflow = ONNXInferenceWorkflow(model_source=model_source, model_args=model_args)
|
||
|
workflow.setup()
|
||
|
|
||
|
@app.route("/")
|
||
|
def index() -> str:
|
||
|
"""
|
||
|
Utility endpoint to check if the service is running.
|
||
|
"""
|
||
|
return "ONNX Iris Classifier Example Program"
|
||
|
|
||
|
@app.route("/service_output", methods=["POST"])
|
||
|
async def inference() -> dict[str, Any]:
|
||
|
req_data = await request.get_json()
|
||
|
"""
|
||
|
InfernetInput has the format:
|
||
|
source: (0 on-chain, 1 off-chain)
|
||
|
data: dict[str, Any]
|
||
|
"""
|
||
|
infernet_input: InfernetInput = InfernetInput(**req_data)
|
||
|
|
||
|
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||
|
web2_input = cast(dict[str, Any], infernet_input.data)
|
||
|
values = cast(List[List[float]], web2_input["input"])
|
||
|
else:
|
||
|
# On-chain requests are sent as a generalized hex-string which we will
|
||
|
# decode to the appropriate format.
|
||
|
web3_input: List[int] = decode(
|
||
|
["uint256[]"], bytes.fromhex(cast(str, infernet_input.data))
|
||
|
)[0]
|
||
|
values = [[float(v) / 1e6 for v in web3_input]]
|
||
|
|
||
|
"""
|
||
|
The input to the onnx inference workflow needs to conform to ONNX runtime's
|
||
|
input_feed format. For more information refer to:
|
||
|
https://docs.ritual.net/ml-workflows/inference-workflows/onnx_inference_workflow
|
||
|
"""
|
||
|
result: dict[str, Any] = workflow.inference({"input": values})
|
||
|
|
||
|
if infernet_input.source == InfernetInputSource.OFFCHAIN:
|
||
|
"""
|
||
|
In case of an off-chain request, the result is returned as is.
|
||
|
"""
|
||
|
return result
|
||
|
else:
|
||
|
"""
|
||
|
In case of an on-chain request, the result is returned in the format:
|
||
|
{
|
||
|
"raw_input": str,
|
||
|
"processed_input": str,
|
||
|
"raw_output": str,
|
||
|
"processed_output": str,
|
||
|
"proof": str,
|
||
|
}
|
||
|
refer to: https://docs.ritual.net/infernet/node/containers for more info.
|
||
|
"""
|
||
|
predictions = cast(List[List[List[float]]], result)
|
||
|
predictions_normalized = [int(p * 1e6) for p in predictions[0][0]]
|
||
|
return {
|
||
|
"raw_input": "",
|
||
|
"processed_input": "",
|
||
|
"raw_output": encode(["uint256[]"], [predictions_normalized]).hex(),
|
||
|
"processed_output": "",
|
||
|
"proof": "",
|
||
|
}
|
||
|
|
||
|
return app
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
"""
|
||
|
Utility to run the app locally. For development purposes only.
|
||
|
"""
|
||
|
create_app().run(port=3000)
|