ritual/projects/prompt-to-nft/container/src/app.py

118 lines
3.9 KiB
Python
Raw Normal View History

import logging
import os
from pathlib import Path
from typing import Any, cast
import aiohttp
from eth_abi import decode, encode # type: ignore
2024-06-06 20:18:48 +03:00
from infernet_ml.utils.service_models import InfernetInput, JobLocation
from quart import Quart, request
2024-06-06 20:18:48 +03:00
from ritual_arweave.file_manager import FileManager
log = logging.getLogger(__name__)
async def run_inference(prompt: str, output_path: str) -> None:
async with aiohttp.ClientSession() as session:
app_url = os.getenv("IMAGE_GEN_SERVICE_URL")
async with session.post(
f"{app_url}/service_output",
json={
"prompt": prompt,
},
) as response:
image_bytes = await response.read()
with open(output_path, "wb") as f:
f.write(image_bytes)
def ensure_env_vars() -> None:
if not os.getenv("IMAGE_GEN_SERVICE_URL"):
raise ValueError("IMAGE_GEN_SERVICE_URL environment variable not set")
def create_app() -> Quart:
app = Quart(__name__)
ensure_env_vars()
@app.route("/")
def index() -> str:
"""
Utility endpoint to check if the service is running.
"""
return "Stable Diffusion Example Program"
@app.route("/service_output", methods=["POST"])
async def inference() -> dict[str, Any]:
req_data = await request.get_json()
"""
InfernetInput has the format:
source: (0 on-chain, 1 off-chain)
data: dict[str, Any]
"""
infernet_input: InfernetInput = InfernetInput(**req_data)
temp_file = "image.png"
2024-06-06 20:18:48 +03:00
match infernet_input:
case InfernetInput(source=JobLocation.OFFCHAIN):
prompt: str = cast(dict[str, str], infernet_input.data)["prompt"]
case InfernetInput(source=JobLocation.ONCHAIN):
# On-chain requests are sent as a generalized hex-string which we will
# decode to the appropriate format.
(prompt, mintTo) = decode(
["string", "address"], bytes.fromhex(cast(str, infernet_input.data))
)
log.info("mintTo: %s", mintTo)
log.info("prompt: %s", prompt)
case _:
raise ValueError("Invalid source")
# run the inference and download the image to a temp file
await run_inference(prompt, temp_file)
2024-06-06 20:18:48 +03:00
tx = FileManager(wallet_path=os.environ["ARWEAVE_WALLET_FILE_PATH"]).upload(
Path(temp_file), {"Content-Type": "image/png"}
)
match infernet_input:
case InfernetInput(destination=JobLocation.OFFCHAIN):
"""
In case of an off-chain request, the result is returned as is.
"""
return {
"prompt": prompt,
"hash": tx.id,
"image_url": f"https://arweave.net/{tx.id}",
}
case InfernetInput(destination=JobLocation.ONCHAIN):
"""
In case of an on-chain request, the result is returned in the format:
{
"raw_input": str,
"processed_input": str,
"raw_output": str,
"processed_output": str,
"proof": str,
}
refer to: https://docs.ritual.net/infernet/node/containers for more
info.
"""
return {
"raw_input": infernet_input.data,
"processed_input": "",
"raw_output": encode(["string"], [tx.id]).hex(),
"processed_output": "",
"proof": "",
}
case _:
raise ValueError("Invalid destination")
return app
if __name__ == "__main__":
"""
Utility to run the app locally. For development purposes only.
"""
create_app().run(host="0.0.0.0", port=3000)