4 Commits

Author SHA1 Message Date
ca552f5a7a add many tokens 2024-09-04 22:25:48 +03:00
2475e22c1a add universal for many periods 2024-09-04 22:22:25 +03:00
9a211a4748 fix requirements.txt 2024-09-03 04:44:52 +03:00
14e8c74962 new model 2024-09-03 04:24:43 +03:00
4 changed files with 143 additions and 66 deletions

80
app.py
View File

@ -4,43 +4,83 @@ import pandas as pd
import numpy as np
from datetime import datetime
from flask import Flask, jsonify, Response
from model import download_data, format_data, train_model
from model import download_data, format_data, train_model, get_training_data_path
from config import model_file_path
app = Flask(__name__)
def update_data():
"""Download price data, format data and train model."""
"""Download price data, format data and train model for each token."""
tokens = ["ETH", "BTC", "SOL", "BNB", "ARB"]
download_data()
format_data()
train_model()
for token in tokens:
format_data(token)
train_model(token)
def get_eth_inference():
"""Load model and predict current price."""
with open(model_file_path, "rb") as f:
def get_inference(token, period):
try:
model_path = model_file_path[token]
with open(model_path, "rb") as f:
loaded_model = pickle.load(f)
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
X_new = np.array([now_timestamp]).reshape(-1, 1)
current_price_pred = loaded_model.predict(X_new)
# Загружаем последние данные для данного токена
training_price_data_path = get_training_data_path(token)
price_data = pd.read_csv(training_price_data_path)
return current_price_pred[0]
# Используем последние значения признаков для предсказания
last_row = price_data.iloc[-1]
last_timestamp = last_row["timestamp"]
# Преобразуем период в секунды
period_seconds = convert_period_to_seconds(period)
new_timestamp = last_timestamp + period_seconds
# Формируем данные для предсказания с новым timestamp
X_new = np.array(
[
new_timestamp,
last_row["price_diff"],
last_row["volatility"],
last_row["volume"],
last_row["moving_avg_7"],
last_row["moving_avg_30"],
]
).reshape(1, -1)
# Делаем предсказание
future_price_pred = loaded_model.predict(X_new)
return future_price_pred[0]
except Exception as e:
print(f"Error during inference: {str(e)}")
raise
@app.route("/inference/<string:token>")
def generate_inference(token):
"""Generate inference for given token."""
if not token or token != "ETH":
error_msg = "Token is required" if not token else "Token not supported"
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
def convert_period_to_seconds(period):
"""Конвертируем период в секунды."""
if period.endswith("min"):
return int(period[:-3]) * 60
elif period.endswith("h"):
return int(period[:-1]) * 3600
elif period.endswith("d"):
return int(period[:-1]) * 86400
else:
raise ValueError(f"Unknown period format: {period}")
@app.route("/inference/<string:token>/<string:period>")
def generate_inference(token, period):
"""Generate inference for given token and period."""
try:
inference = get_eth_inference()
inference = get_inference(token, period)
return Response(str(inference), status=200)
except Exception as e:
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
return Response(
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
)
@app.route("/update")
@ -55,4 +95,4 @@ def update():
if __name__ == "__main__":
update_data()
app.run(host="0.0.0.0", port=8000)
app.run(host="0.0.0.0", port=8080)

View File

@ -2,4 +2,15 @@ import os
app_base_path = os.getenv("APP_BASE_PATH", default=os.getcwd())
data_base_path = os.path.join(app_base_path, "data")
model_file_path = os.path.join(data_base_path, "model.pkl")
model_file_path = {
"ETH": os.path.join(data_base_path, "eth_model.pkl"),
"BTC": os.path.join(data_base_path, "btc_model.pkl"),
"SOL": os.path.join(data_base_path, "sol_model.pkl"),
"BNB": os.path.join(data_base_path, "bnb_model.pkl"),
"ARB": os.path.join(data_base_path, "arb_model.pkl"),
}
def get_training_data_path(token):
return os.path.join(data_base_path, f"{token.lower()}_price_data.csv")

View File

@ -1,23 +1,28 @@
import os
import pickle
from zipfile import ZipFile
from datetime import datetime
import pandas as pd
import numpy as np
from xgboost import XGBRegressor
from zipfile import ZipFile
from datetime import datetime, timedelta
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import linear_model
from updater import download_binance_monthly_data, download_binance_daily_data
from config import data_base_path, model_file_path
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
def get_training_data_path(token):
"""
Возвращает путь к файлу данных для указанного токена.
"""
return os.path.join(data_base_path, f"{token}_price_data.csv")
def download_data():
cm_or_um = "um"
symbols = ["ETHUSDT"]
intervals = ["1d"]
symbols = ["ETHUSDT", "BTCUSDT", "SOLUSDT", "BNBUSDT", "ARBUSDT"]
intervals = ["10min", "1d"]
years = ["2020", "2021", "2022", "2023", "2024"]
months = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
download_path = binance_data_path
@ -34,20 +39,17 @@ def download_data():
print(f"Downloaded daily data to {download_path}.")
def format_data():
files = sorted([x for x in os.listdir(binance_data_path)])
def format_data(token):
files = sorted(
[x for x in os.listdir(binance_data_path) if x.endswith(".zip") and token in x]
)
# No files to process
if len(files) == 0:
return
price_df = pd.DataFrame()
for file in files:
zip_file_path = os.path.join(binance_data_path, file)
if not zip_file_path.endswith(".zip"):
continue
myzip = ZipFile(zip_file_path)
with myzip.open(myzip.filelist[0]) as f:
line = f.readline()
@ -70,38 +72,53 @@ def format_data():
df.index.name = "date"
price_df = pd.concat([price_df, df])
price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
price_df["price_diff"] = price_df["close"].diff()
price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
price_df["volume"] = price_df["volume"]
price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
# Удаляем строки с NaN значениями
price_df.dropna(inplace=True)
# Сохраняем данные
training_price_data_path = get_training_data_path(token)
price_df.sort_index().to_csv(training_price_data_path)
def train_model():
# Load the eth price data
def train_model(token):
training_price_data_path = get_training_data_path(token)
price_data = pd.read_csv(training_price_data_path)
df = pd.DataFrame()
# Convert 'date' to a numerical value (timestamp) we can use for regression
df["date"] = pd.to_datetime(price_data["date"])
df["date"] = df["date"].map(pd.Timestamp.timestamp)
# Используем дополнительные признаки
x = price_data[
[
"timestamp",
"price_diff",
"volatility",
"volume",
"moving_avg_7",
"moving_avg_30",
]
]
y = price_data["close"]
df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, random_state=0
)
# Reshape the data to the shape expected by sklearn
x = df["date"].values.reshape(-1, 1)
y = df["price"].values.reshape(-1, 1)
# Split the data into training set and test set
x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
# Train the model
print("Training model...")
model = linear_model.Lasso(alpha=0.1)
model = XGBRegressor()
model.fit(x_train, y_train)
print("Model trained.")
# create the model's parent directory if it doesn't exist
os.makedirs(os.path.dirname(model_file_path), exist_ok=True)
token_model_path = model_file_path[token]
os.makedirs(os.path.dirname(token_model_path), exist_ok=True)
# Save the trained model to a file
with open(model_file_path, "wb") as f:
with open(token_model_path, "wb") as f:
pickle.dump(model, f)
print(f"Trained model saved to {model_file_path}")
print(f"Trained model saved to {token_model_path}")
# Optional: Оценка модели
y_pred = model.predict(x_test)
print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")

View File

@ -5,3 +5,12 @@ pandas==2.1.3
Requests==2.32.0
scikit_learn==1.3.2
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
itsdangerous
Jinja2
MarkupSafe
python-dateutil
pytz
scipy
six
scikit-learn
xgboost