Compare commits
13 Commits
lasso-1
...
XGBRegress
Author | SHA1 | Date | |
---|---|---|---|
1ba4c0158d | |||
fc7097fd50 | |||
4b7f57d0dd | |||
61fa099391 | |||
520416b772 | |||
3f17f7f0b7 | |||
59672292e2 | |||
505ba1a42d | |||
7fd61d13e5 | |||
ca552f5a7a | |||
2475e22c1a | |||
9a211a4748 | |||
14e8c74962 |
@ -4,6 +4,8 @@ FROM amd64/python:3.9-buster as project_env
|
|||||||
# Set the working directory in the container
|
# Set the working directory in the container
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENV FLASK_ENV=production
|
||||||
|
|
||||||
# Install dependencies
|
# Install dependencies
|
||||||
COPY requirements.txt requirements.txt
|
COPY requirements.txt requirements.txt
|
||||||
RUN pip install --upgrade pip setuptools \
|
RUN pip install --upgrade pip setuptools \
|
||||||
|
92
app.py
92
app.py
@ -4,43 +4,83 @@ import pandas as pd
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from flask import Flask, jsonify, Response
|
from flask import Flask, jsonify, Response
|
||||||
from model import download_data, format_data, train_model
|
from model import download_data, format_data, train_model, get_training_data_path
|
||||||
from config import model_file_path
|
from config import model_file_path
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
|
||||||
def update_data():
|
def update_data():
|
||||||
"""Download price data, format data and train model."""
|
"""Download price data, format data and train model for each token."""
|
||||||
|
tokens = ["ETH", "BTC", "SOL", "BNB", "ARB"]
|
||||||
download_data()
|
download_data()
|
||||||
format_data()
|
for token in tokens:
|
||||||
train_model()
|
format_data(token)
|
||||||
|
train_model(token)
|
||||||
|
|
||||||
|
|
||||||
def get_eth_inference():
|
def get_inference(token, period):
|
||||||
"""Load model and predict current price."""
|
|
||||||
with open(model_file_path, "rb") as f:
|
|
||||||
loaded_model = pickle.load(f)
|
|
||||||
|
|
||||||
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
|
|
||||||
X_new = np.array([now_timestamp]).reshape(-1, 1)
|
|
||||||
current_price_pred = loaded_model.predict(X_new)
|
|
||||||
|
|
||||||
return current_price_pred[0]
|
|
||||||
|
|
||||||
|
|
||||||
@app.route("/inference/<string:token>")
|
|
||||||
def generate_inference(token):
|
|
||||||
"""Generate inference for given token."""
|
|
||||||
if not token or token != "ETH":
|
|
||||||
error_msg = "Token is required" if not token else "Token not supported"
|
|
||||||
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
inference = get_eth_inference()
|
model_path = model_file_path[token]
|
||||||
|
|
||||||
|
with open(model_path, "rb") as f:
|
||||||
|
loaded_model = pickle.load(f)
|
||||||
|
|
||||||
|
# Загружаем последние данные для данного токена
|
||||||
|
training_price_data_path = get_training_data_path(token)
|
||||||
|
price_data = pd.read_csv(training_price_data_path)
|
||||||
|
|
||||||
|
# Используем последние значения признаков для предсказания
|
||||||
|
last_row = price_data.iloc[-1]
|
||||||
|
last_timestamp = last_row["timestamp"]
|
||||||
|
|
||||||
|
# Преобразуем период в секунды
|
||||||
|
period_seconds = convert_period_to_seconds(period)
|
||||||
|
new_timestamp = last_timestamp + period_seconds
|
||||||
|
|
||||||
|
# Формируем данные для предсказания с новым timestamp
|
||||||
|
X_new = np.array(
|
||||||
|
[
|
||||||
|
new_timestamp,
|
||||||
|
last_row["price_diff"],
|
||||||
|
last_row["volatility"],
|
||||||
|
last_row["volume"],
|
||||||
|
last_row["moving_avg_7"],
|
||||||
|
last_row["moving_avg_30"],
|
||||||
|
]
|
||||||
|
).reshape(1, -1)
|
||||||
|
|
||||||
|
# Делаем предсказание
|
||||||
|
future_price_pred = loaded_model.predict(X_new)
|
||||||
|
return future_price_pred[0]
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during inference: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def convert_period_to_seconds(period):
|
||||||
|
"""Конвертируем период в секунды."""
|
||||||
|
if period.endswith("m"):
|
||||||
|
return int(period[:-1]) * 60
|
||||||
|
elif period.endswith("h"):
|
||||||
|
return int(period[:-1]) * 3600
|
||||||
|
elif period.endswith("d"):
|
||||||
|
return int(period[:-1]) * 86400
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown period format: {period}")
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/inference/<string:token>/<string:period>")
|
||||||
|
def generate_inference(token, period):
|
||||||
|
"""Generate inference for given token and period."""
|
||||||
|
try:
|
||||||
|
inference = get_inference(token, period)
|
||||||
return Response(str(inference), status=200)
|
return Response(str(inference), status=200)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
|
return Response(
|
||||||
|
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@app.route("/update")
|
@app.route("/update")
|
||||||
@ -55,4 +95,4 @@ def update():
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
update_data()
|
update_data()
|
||||||
app.run(host="0.0.0.0", port=8000)
|
app.run(host="0.0.0.0", port=8080)
|
||||||
|
62
config.json
62
config.json
@ -8,35 +8,53 @@
|
|||||||
"nodeRpc": "###RPC_URL###",
|
"nodeRpc": "###RPC_URL###",
|
||||||
"maxRetries": 10,
|
"maxRetries": 10,
|
||||||
"delay": 30,
|
"delay": 30,
|
||||||
"submitTx": false
|
"submitTx": true
|
||||||
},
|
},
|
||||||
"worker": [
|
"worker": [
|
||||||
{
|
{
|
||||||
"topicId": 1,
|
"topicId": 1,
|
||||||
"inferenceEntrypointName": "api-worker-reputer",
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
"loopSeconds": 5,
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/ETH/10m", "Token": "ETH" }
|
||||||
"parameters": {
|
|
||||||
"InferenceEndpoint": "http://inference:8000/inference/{Token}",
|
|
||||||
"Token": "ETH"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"topicId": 2,
|
"topicId": 2,
|
||||||
"inferenceEntrypointName": "api-worker-reputer",
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
"loopSeconds": 5,
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/ETH/24h", "Token": "ETH" }
|
||||||
"parameters": {
|
|
||||||
"InferenceEndpoint": "http://inference:8000/inference/{Token}",
|
|
||||||
"Token": "ETH"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"topicId": 3,
|
||||||
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/BTC/10m", "Token": "BTC" }
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"topicId": 4,
|
||||||
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/BTC/24h", "Token": "BTC" }
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"topicId": 5,
|
||||||
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/SOL/10m", "Token": "SOL" }
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"topicId": 6,
|
||||||
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/SOL/24h", "Token": "SOL" }
|
||||||
|
},
|
||||||
|
{
|
||||||
"topicId": 7,
|
"topicId": 7,
|
||||||
"inferenceEntrypointName": "api-worker-reputer",
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
"loopSeconds": 5,
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/ETH/20m", "Token": "ETH" }
|
||||||
"parameters": {
|
},
|
||||||
"InferenceEndpoint": "http://inference:8000/inference/{Token}",
|
{
|
||||||
"Token": "ETH"
|
"topicId": 8,
|
||||||
}
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/BNB/20m", "Token": "BNB" }
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"topicId": 9,
|
||||||
|
"inferenceEntrypointName": "api-worker-reputer", "loopSeconds": 5,
|
||||||
|
"parameters": { "InferenceEndpoint": "http://inference:8080/inference/ARB/20m", "Token": "ARB" }
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
13
config.py
13
config.py
@ -2,4 +2,15 @@ import os
|
|||||||
|
|
||||||
app_base_path = os.getenv("APP_BASE_PATH", default=os.getcwd())
|
app_base_path = os.getenv("APP_BASE_PATH", default=os.getcwd())
|
||||||
data_base_path = os.path.join(app_base_path, "data")
|
data_base_path = os.path.join(app_base_path, "data")
|
||||||
model_file_path = os.path.join(data_base_path, "model.pkl")
|
|
||||||
|
model_file_path = {
|
||||||
|
"ETH": os.path.join(data_base_path, "eth_model.pkl"),
|
||||||
|
"BTC": os.path.join(data_base_path, "btc_model.pkl"),
|
||||||
|
"SOL": os.path.join(data_base_path, "sol_model.pkl"),
|
||||||
|
"BNB": os.path.join(data_base_path, "bnb_model.pkl"),
|
||||||
|
"ARB": os.path.join(data_base_path, "arb_model.pkl"),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_training_data_path(token):
|
||||||
|
return os.path.join(data_base_path, f"{token.lower()}_price_data.csv")
|
||||||
|
@ -4,12 +4,12 @@ services:
|
|||||||
build: .
|
build: .
|
||||||
command: python -u /app/app.py
|
command: python -u /app/app.py
|
||||||
ports:
|
ports:
|
||||||
- "8000:8000"
|
- "8080:8080"
|
||||||
healthcheck:
|
healthcheck:
|
||||||
test: ["CMD", "curl", "-f", "http://localhost:8000/inference/ETH"]
|
test: ["CMD", "curl", "-f", "http://localhost:8080/inference/ETH/10m"]
|
||||||
interval: 10s
|
interval: 30s
|
||||||
timeout: 5s
|
timeout: 5s
|
||||||
retries: 12
|
retries: 20
|
||||||
volumes:
|
volumes:
|
||||||
- ./inference-data:/app/data
|
- ./inference-data:/app/data
|
||||||
restart: always
|
restart: always
|
||||||
@ -18,7 +18,7 @@ services:
|
|||||||
container_name: updater-basic-eth-pred
|
container_name: updater-basic-eth-pred
|
||||||
build: .
|
build: .
|
||||||
environment:
|
environment:
|
||||||
- INFERENCE_API_ADDRESS=http://inference:8000
|
- INFERENCE_API_ADDRESS=http://inference:8080
|
||||||
command: >
|
command: >
|
||||||
sh -c "
|
sh -c "
|
||||||
while true; do
|
while true; do
|
||||||
|
93
model.py
93
model.py
@ -1,23 +1,28 @@
|
|||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
from zipfile import ZipFile
|
|
||||||
from datetime import datetime
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from xgboost import XGBRegressor
|
||||||
|
from zipfile import ZipFile
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
import pandas as pd
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn import linear_model
|
|
||||||
from updater import download_binance_monthly_data, download_binance_daily_data
|
from updater import download_binance_monthly_data, download_binance_daily_data
|
||||||
from config import data_base_path, model_file_path
|
from config import data_base_path, model_file_path
|
||||||
|
|
||||||
|
|
||||||
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
|
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
|
||||||
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
|
|
||||||
|
|
||||||
|
def get_training_data_path(token):
|
||||||
|
"""
|
||||||
|
Возвращает путь к файлу данных для указанного токена.
|
||||||
|
"""
|
||||||
|
return os.path.join(data_base_path, f"{token}_price_data.csv")
|
||||||
|
|
||||||
|
|
||||||
def download_data():
|
def download_data():
|
||||||
cm_or_um = "um"
|
cm_or_um = "um"
|
||||||
symbols = ["ETHUSDT"]
|
symbols = ["ETHUSDT", "BTCUSDT", "SOLUSDT", "BNBUSDT", "ARBUSDT"]
|
||||||
intervals = ["1d"]
|
intervals = ["10min", "1d"]
|
||||||
years = ["2020", "2021", "2022", "2023", "2024"]
|
years = ["2020", "2021", "2022", "2023", "2024"]
|
||||||
months = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
|
months = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
|
||||||
download_path = binance_data_path
|
download_path = binance_data_path
|
||||||
@ -34,20 +39,17 @@ def download_data():
|
|||||||
print(f"Downloaded daily data to {download_path}.")
|
print(f"Downloaded daily data to {download_path}.")
|
||||||
|
|
||||||
|
|
||||||
def format_data():
|
def format_data(token):
|
||||||
files = sorted([x for x in os.listdir(binance_data_path)])
|
files = sorted(
|
||||||
|
[x for x in os.listdir(binance_data_path) if x.endswith(".zip") and token in x]
|
||||||
|
)
|
||||||
|
|
||||||
# No files to process
|
|
||||||
if len(files) == 0:
|
if len(files) == 0:
|
||||||
return
|
return
|
||||||
|
|
||||||
price_df = pd.DataFrame()
|
price_df = pd.DataFrame()
|
||||||
for file in files:
|
for file in files:
|
||||||
zip_file_path = os.path.join(binance_data_path, file)
|
zip_file_path = os.path.join(binance_data_path, file)
|
||||||
|
|
||||||
if not zip_file_path.endswith(".zip"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
myzip = ZipFile(zip_file_path)
|
myzip = ZipFile(zip_file_path)
|
||||||
with myzip.open(myzip.filelist[0]) as f:
|
with myzip.open(myzip.filelist[0]) as f:
|
||||||
line = f.readline()
|
line = f.readline()
|
||||||
@ -70,38 +72,53 @@ def format_data():
|
|||||||
df.index.name = "date"
|
df.index.name = "date"
|
||||||
price_df = pd.concat([price_df, df])
|
price_df = pd.concat([price_df, df])
|
||||||
|
|
||||||
|
price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
|
||||||
|
price_df["price_diff"] = price_df["close"].diff()
|
||||||
|
price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
|
||||||
|
price_df["volume"] = price_df["volume"]
|
||||||
|
price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
|
||||||
|
price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
|
||||||
|
|
||||||
|
# Удаляем строки с NaN значениями
|
||||||
|
price_df.dropna(inplace=True)
|
||||||
|
|
||||||
|
# Сохраняем данные
|
||||||
|
training_price_data_path = get_training_data_path(token)
|
||||||
price_df.sort_index().to_csv(training_price_data_path)
|
price_df.sort_index().to_csv(training_price_data_path)
|
||||||
|
|
||||||
|
|
||||||
def train_model():
|
def train_model(token):
|
||||||
# Load the eth price data
|
training_price_data_path = get_training_data_path(token)
|
||||||
price_data = pd.read_csv(training_price_data_path)
|
price_data = pd.read_csv(training_price_data_path)
|
||||||
df = pd.DataFrame()
|
|
||||||
|
|
||||||
# Convert 'date' to a numerical value (timestamp) we can use for regression
|
# Используем дополнительные признаки
|
||||||
df["date"] = pd.to_datetime(price_data["date"])
|
x = price_data[
|
||||||
df["date"] = df["date"].map(pd.Timestamp.timestamp)
|
[
|
||||||
|
"timestamp",
|
||||||
|
"price_diff",
|
||||||
|
"volatility",
|
||||||
|
"volume",
|
||||||
|
"moving_avg_7",
|
||||||
|
"moving_avg_30",
|
||||||
|
]
|
||||||
|
]
|
||||||
|
y = price_data["close"]
|
||||||
|
|
||||||
df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
|
x_train, x_test, y_train, y_test = train_test_split(
|
||||||
|
x, y, test_size=0.2, random_state=0
|
||||||
|
)
|
||||||
|
|
||||||
# Reshape the data to the shape expected by sklearn
|
model = XGBRegressor()
|
||||||
x = df["date"].values.reshape(-1, 1)
|
|
||||||
y = df["price"].values.reshape(-1, 1)
|
|
||||||
|
|
||||||
# Split the data into training set and test set
|
|
||||||
x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
|
|
||||||
|
|
||||||
# Train the model
|
|
||||||
print("Training model...")
|
|
||||||
model = linear_model.Lasso(alpha=0.1)
|
|
||||||
model.fit(x_train, y_train)
|
model.fit(x_train, y_train)
|
||||||
print("Model trained.")
|
|
||||||
|
|
||||||
# create the model's parent directory if it doesn't exist
|
token_model_path = model_file_path[token]
|
||||||
os.makedirs(os.path.dirname(model_file_path), exist_ok=True)
|
os.makedirs(os.path.dirname(token_model_path), exist_ok=True)
|
||||||
|
|
||||||
# Save the trained model to a file
|
with open(token_model_path, "wb") as f:
|
||||||
with open(model_file_path, "wb") as f:
|
|
||||||
pickle.dump(model, f)
|
pickle.dump(model, f)
|
||||||
|
|
||||||
print(f"Trained model saved to {model_file_path}")
|
print(f"Trained model saved to {token_model_path}")
|
||||||
|
|
||||||
|
# Optional: Оценка модели
|
||||||
|
y_pred = model.predict(x_test)
|
||||||
|
print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")
|
||||||
|
@ -4,4 +4,13 @@ numpy==1.26.2
|
|||||||
pandas==2.1.3
|
pandas==2.1.3
|
||||||
Requests==2.32.0
|
Requests==2.32.0
|
||||||
scikit_learn==1.3.2
|
scikit_learn==1.3.2
|
||||||
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
|
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||||
|
itsdangerous
|
||||||
|
Jinja2
|
||||||
|
MarkupSafe
|
||||||
|
python-dateutil
|
||||||
|
pytz
|
||||||
|
scipy
|
||||||
|
six
|
||||||
|
scikit-learn
|
||||||
|
xgboost
|
Reference in New Issue
Block a user