Compare commits

..

2 Commits

Author SHA1 Message Date
vvzvlad
9a211a4748 fix requirements.txt 2024-09-03 04:44:52 +03:00
vvzvlad
14e8c74962 new model 2024-09-03 04:24:43 +03:00
3 changed files with 80 additions and 34 deletions

44
app.py
View File

@ -4,7 +4,7 @@ import pandas as pd
import numpy as np
from datetime import datetime
from flask import Flask, jsonify, Response
from model import download_data, format_data, train_model
from model import download_data, format_data, train_model, training_price_data_path
from config import model_file_path
app = Flask(__name__)
@ -19,14 +19,36 @@ def update_data():
def get_eth_inference():
"""Load model and predict current price."""
with open(model_file_path, "rb") as f:
loaded_model = pickle.load(f)
try:
with open(model_file_path, "rb") as f:
loaded_model = pickle.load(f)
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
X_new = np.array([now_timestamp]).reshape(-1, 1)
current_price_pred = loaded_model.predict(X_new)
# Загружаем последние данные из файла
price_data = pd.read_csv(training_price_data_path)
return current_price_pred[0]
# Используем последние значения признаков для предсказания
X_new = (
price_data[
[
"timestamp",
"price_diff",
"volatility",
"volume",
"moving_avg_7",
"moving_avg_30",
]
]
.iloc[-1]
.values.reshape(1, -1)
)
# Делаем предсказание
current_price_pred = loaded_model.predict(X_new)
return current_price_pred[0]
except Exception as e:
print(f"Error during inference: {str(e)}")
raise
@app.route("/inference/<string:token>")
@ -34,13 +56,17 @@ def generate_inference(token):
"""Generate inference for given token."""
if not token or token != "ETH":
error_msg = "Token is required" if not token else "Token not supported"
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
return Response(
json.dumps({"error": error_msg}), status=400, mimetype="application/json"
)
try:
inference = get_eth_inference()
return Response(str(inference), status=200)
except Exception as e:
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
return Response(
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
)
@app.route("/update")

View File

@ -1,15 +1,14 @@
import os
import pickle
import numpy as np
from xgboost import XGBRegressor
from zipfile import ZipFile
from datetime import datetime
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import linear_model
from updater import download_binance_monthly_data, download_binance_daily_data
from config import data_base_path, model_file_path
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
@ -35,19 +34,14 @@ def download_data():
def format_data():
files = sorted([x for x in os.listdir(binance_data_path)])
files = sorted([x for x in os.listdir(binance_data_path) if x.endswith(".zip")])
# No files to process
if len(files) == 0:
return
price_df = pd.DataFrame()
for file in files:
zip_file_path = os.path.join(binance_data_path, file)
if not zip_file_path.endswith(".zip"):
continue
myzip = ZipFile(zip_file_path)
with myzip.open(myzip.filelist[0]) as f:
line = f.readline()
@ -70,30 +64,43 @@ def format_data():
df.index.name = "date"
price_df = pd.concat([price_df, df])
price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
price_df["price_diff"] = price_df["close"].diff()
price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
price_df["volume"] = price_df["volume"]
price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
# Удаляем строки с NaN значениями
price_df.dropna(inplace=True)
# Сохраняем данные
price_df.sort_index().to_csv(training_price_data_path)
def train_model():
# Load the eth price data
price_data = pd.read_csv(training_price_data_path)
df = pd.DataFrame()
# Convert 'date' to a numerical value (timestamp) we can use for regression
df["date"] = pd.to_datetime(price_data["date"])
df["date"] = df["date"].map(pd.Timestamp.timestamp)
# Используем дополнительные признаки
x = price_data[
[
"timestamp",
"price_diff",
"volatility",
"volume",
"moving_avg_7",
"moving_avg_30",
]
]
y = price_data["close"]
df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
# Reshape the data to the shape expected by sklearn
x = df["date"].values.reshape(-1, 1)
y = df["price"].values.reshape(-1, 1)
# Split the data into training set and test set
x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, random_state=0
)
# Train the model
print("Training model...")
model = linear_model.Lasso(alpha=0.1)
model = XGBRegressor()
model.fit(x_train, y_train)
print("Model trained.")
@ -104,4 +111,8 @@ def train_model():
with open(model_file_path, "wb") as f:
pickle.dump(model, f)
print(f"Trained model saved to {model_file_path}")
print(f"Trained model saved to {model_file_path}")
# Optional: Оценка модели
y_pred = model.predict(x_test)
print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")

View File

@ -4,4 +4,13 @@ numpy==1.26.2
pandas==2.1.3
Requests==2.32.0
scikit_learn==1.3.2
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
itsdangerous
Jinja2
MarkupSafe
python-dateutil
pytz
scipy
six
scikit-learn
xgboost