Compare commits
	
		
			8 Commits
		
	
	
		
			b631442f3e
			...
			XGBRegress
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 9a211a4748 | |||
| 14e8c74962 | |||
| c7cc0079a8 | |||
| c5522e8c72 | |||
| 7ecfd10d50 | |||
| d75baceae9 | |||
| 714bf4c863 | |||
| e65e0d95ed | 
							
								
								
									
										17
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,17 @@
 | 
				
			|||||||
 | 
					# Use an official Python runtime as the base image
 | 
				
			||||||
 | 
					FROM amd64/python:3.9-buster as project_env
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set the working directory in the container
 | 
				
			||||||
 | 
					WORKDIR /app
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Install dependencies
 | 
				
			||||||
 | 
					COPY requirements.txt requirements.txt
 | 
				
			||||||
 | 
					RUN pip install --upgrade pip setuptools \
 | 
				
			||||||
 | 
					    && pip install -r requirements.txt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					FROM project_env
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					COPY . /app/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set the entrypoint command
 | 
				
			||||||
 | 
					CMD ["gunicorn", "--conf", "/app/gunicorn_conf.py", "main:app"]
 | 
				
			||||||
							
								
								
									
										44
									
								
								app.py
									
									
									
									
									
								
							
							
						
						
									
										44
									
								
								app.py
									
									
									
									
									
								
							@ -4,7 +4,7 @@ import pandas as pd
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
from datetime import datetime
 | 
					from datetime import datetime
 | 
				
			||||||
from flask import Flask, jsonify, Response
 | 
					from flask import Flask, jsonify, Response
 | 
				
			||||||
from model import download_data, format_data, train_model
 | 
					from model import download_data, format_data, train_model, training_price_data_path
 | 
				
			||||||
from config import model_file_path
 | 
					from config import model_file_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
app = Flask(__name__)
 | 
					app = Flask(__name__)
 | 
				
			||||||
@ -19,14 +19,36 @@ def update_data():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
def get_eth_inference():
 | 
					def get_eth_inference():
 | 
				
			||||||
    """Load model and predict current price."""
 | 
					    """Load model and predict current price."""
 | 
				
			||||||
    with open(model_file_path, "rb") as f:
 | 
					    try:
 | 
				
			||||||
        loaded_model = pickle.load(f)
 | 
					        with open(model_file_path, "rb") as f:
 | 
				
			||||||
 | 
					            loaded_model = pickle.load(f)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    now_timestamp = pd.Timestamp(datetime.now()).timestamp()
 | 
					        # Загружаем последние данные из файла
 | 
				
			||||||
    X_new = np.array([now_timestamp]).reshape(-1, 1)
 | 
					        price_data = pd.read_csv(training_price_data_path)
 | 
				
			||||||
    current_price_pred = loaded_model.predict(X_new)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return current_price_pred[0]
 | 
					        # Используем последние значения признаков для предсказания
 | 
				
			||||||
 | 
					        X_new = (
 | 
				
			||||||
 | 
					            price_data[
 | 
				
			||||||
 | 
					                [
 | 
				
			||||||
 | 
					                    "timestamp",
 | 
				
			||||||
 | 
					                    "price_diff",
 | 
				
			||||||
 | 
					                    "volatility",
 | 
				
			||||||
 | 
					                    "volume",
 | 
				
			||||||
 | 
					                    "moving_avg_7",
 | 
				
			||||||
 | 
					                    "moving_avg_30",
 | 
				
			||||||
 | 
					                ]
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					            .iloc[-1]
 | 
				
			||||||
 | 
					            .values.reshape(1, -1)
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Делаем предсказание
 | 
				
			||||||
 | 
					        current_price_pred = loaded_model.predict(X_new)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return current_price_pred[0]
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print(f"Error during inference: {str(e)}")
 | 
				
			||||||
 | 
					        raise
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@app.route("/inference/<string:token>")
 | 
					@app.route("/inference/<string:token>")
 | 
				
			||||||
@ -34,13 +56,17 @@ def generate_inference(token):
 | 
				
			|||||||
    """Generate inference for given token."""
 | 
					    """Generate inference for given token."""
 | 
				
			||||||
    if not token or token != "ETH":
 | 
					    if not token or token != "ETH":
 | 
				
			||||||
        error_msg = "Token is required" if not token else "Token not supported"
 | 
					        error_msg = "Token is required" if not token else "Token not supported"
 | 
				
			||||||
        return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
 | 
					        return Response(
 | 
				
			||||||
 | 
					            json.dumps({"error": error_msg}), status=400, mimetype="application/json"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
        inference = get_eth_inference()
 | 
					        inference = get_eth_inference()
 | 
				
			||||||
        return Response(str(inference), status=200)
 | 
					        return Response(str(inference), status=200)
 | 
				
			||||||
    except Exception as e:
 | 
					    except Exception as e:
 | 
				
			||||||
        return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
 | 
					        return Response(
 | 
				
			||||||
 | 
					            json.dumps({"error": str(e)}), status=500, mimetype="application/json"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@app.route("/update")
 | 
					@app.route("/update")
 | 
				
			||||||
 | 
				
			|||||||
@ -7,7 +7,7 @@
 | 
				
			|||||||
        "gasAdjustment": 1.0,
 | 
					        "gasAdjustment": 1.0,
 | 
				
			||||||
        "nodeRpc": "###RPC_URL###",
 | 
					        "nodeRpc": "###RPC_URL###",
 | 
				
			||||||
        "maxRetries": 10,
 | 
					        "maxRetries": 10,
 | 
				
			||||||
        "delay": 10,
 | 
					        "delay": 30,
 | 
				
			||||||
        "submitTx": false
 | 
					        "submitTx": false
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "worker": [
 | 
					    "worker": [
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										5
									
								
								config.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								config.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
				
			|||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					app_base_path = os.getenv("APP_BASE_PATH", default=os.getcwd())
 | 
				
			||||||
 | 
					data_base_path = os.path.join(app_base_path, "data")
 | 
				
			||||||
 | 
					model_file_path = os.path.join(data_base_path, "model.pkl")
 | 
				
			||||||
							
								
								
									
										12
									
								
								gunicorn_conf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								gunicorn_conf.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,12 @@
 | 
				
			|||||||
 | 
					# Gunicorn config variables
 | 
				
			||||||
 | 
					loglevel = "info"
 | 
				
			||||||
 | 
					errorlog = "-"  # stderr
 | 
				
			||||||
 | 
					accesslog = "-"  # stdout
 | 
				
			||||||
 | 
					worker_tmp_dir = "/dev/shm"
 | 
				
			||||||
 | 
					graceful_timeout = 120
 | 
				
			||||||
 | 
					timeout = 30
 | 
				
			||||||
 | 
					keepalive = 5
 | 
				
			||||||
 | 
					worker_class = "gthread"
 | 
				
			||||||
 | 
					workers = 1
 | 
				
			||||||
 | 
					threads = 8
 | 
				
			||||||
 | 
					bind = "0.0.0.0:9000"
 | 
				
			||||||
							
								
								
									
										43
									
								
								init.config
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										43
									
								
								init.config
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,43 @@
 | 
				
			|||||||
 | 
					#!/usr/bin/env bash
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					set -e
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if [ ! -f config.json ]; then
 | 
				
			||||||
 | 
					    echo "Error: config.json file not found, please provide one"
 | 
				
			||||||
 | 
					    exit 1
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					nodeName=$(jq -r '.wallet.addressKeyName' config.json)
 | 
				
			||||||
 | 
					if [ -z "$nodeName" ]; then
 | 
				
			||||||
 | 
					    echo "No wallet name provided for the node, please provide your preferred wallet name. config.json >> wallet.addressKeyName"
 | 
				
			||||||
 | 
					    exit 1
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Ensure the worker-data directory exists
 | 
				
			||||||
 | 
					mkdir -p ./worker-data
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					json_content=$(cat ./config.json)
 | 
				
			||||||
 | 
					stringified_json=$(echo "$json_content" | jq -c .)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mnemonic=$(jq -r '.wallet.addressRestoreMnemonic' config.json)
 | 
				
			||||||
 | 
					if [ -n "$mnemonic" ]; then
 | 
				
			||||||
 | 
					    echo "ALLORA_OFFCHAIN_NODE_CONFIG_JSON='$stringified_json'" > ./worker-data/env_file
 | 
				
			||||||
 | 
					    echo "NAME=$nodeName" >> ./worker-data/env_file
 | 
				
			||||||
 | 
					    echo "ENV_LOADED=true" >> ./worker-data/env_file
 | 
				
			||||||
 | 
					    echo "wallet mnemonic already provided by you, loading config.json . Please proceed to run docker compose"
 | 
				
			||||||
 | 
					    exit 0
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if [ ! -f ./worker-data/env_file ]; then
 | 
				
			||||||
 | 
					    echo "ENV_LOADED=false" > ./worker-data/env_file
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ENV_LOADED=$(grep '^ENV_LOADED=' ./worker-data/env_file | cut -d '=' -f 2)
 | 
				
			||||||
 | 
					if [ "$ENV_LOADED" = "false" ]; then
 | 
				
			||||||
 | 
					    json_content=$(cat ./config.json)
 | 
				
			||||||
 | 
					    stringified_json=$(echo "$json_content" | jq -c .)
 | 
				
			||||||
 | 
					    docker run -it --entrypoint=bash -v $(pwd)/worker-data:/data -v $(pwd)/scripts:/scripts -e NAME="${nodeName}" -e ALLORA_OFFCHAIN_NODE_CONFIG_JSON="${stringified_json}" alloranetwork/allora-chain:latest -c "bash /scripts/init.sh"
 | 
				
			||||||
 | 
					    echo "config.json saved to ./worker-data/env_file"
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    echo "config.json is already loaded, skipping the operation. You can set ENV_LOADED variable to false in ./worker-data/env_file to reload the config.json"
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
@ -2,7 +2,6 @@ import subprocess
 | 
				
			|||||||
import json
 | 
					import json
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
def is_json(myjson):
 | 
					def is_json(myjson):
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
@ -11,7 +10,7 @@ def is_json(myjson):
 | 
				
			|||||||
        return False
 | 
					        return False
 | 
				
			||||||
    return True
 | 
					    return True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def parse_logs():
 | 
					def parse_logs(timeout):
 | 
				
			||||||
    start_time = time.time()
 | 
					    start_time = time.time()
 | 
				
			||||||
    while True:
 | 
					    while True:
 | 
				
			||||||
        unsuccessful_attempts = 0
 | 
					        unsuccessful_attempts = 0
 | 
				
			||||||
@ -50,26 +49,28 @@ def parse_logs():
 | 
				
			|||||||
                            return False, "Max Retry Reached"
 | 
					                            return False, "Max Retry Reached"
 | 
				
			||||||
        except Exception as e:
 | 
					        except Exception as e:
 | 
				
			||||||
            print(f"Exception occurred: {e}", flush=True)
 | 
					            print(f"Exception occurred: {e}", flush=True)
 | 
				
			||||||
        finally:
 | 
					 | 
				
			||||||
            process.stdout.close()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("Sleeping before next log request...", flush=True)
 | 
					        print("Sleeping before next log request...", flush=True)
 | 
				
			||||||
        time.sleep(30)
 | 
					        time.sleep(30)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if time.time() - start_time > 30 * 60:
 | 
					        if time.time() - start_time > timeout * 60:
 | 
				
			||||||
            print("Timeout reached: 30 minutes elapsed without success.", flush=True)
 | 
					            print(f"Timeout reached: {timeout} minutes elapsed without success.", flush=True)
 | 
				
			||||||
            return False, "Timeout reached: 30 minutes elapsed without success."
 | 
					            return False, f"Timeout reached: {timeout} minutes elapsed without success."
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return False, "No Success"
 | 
					    return False, "No Success"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    print("Parsing logs...")
 | 
					    print("Parsing logs...")
 | 
				
			||||||
    result = parse_logs()
 | 
					    if len(sys.argv) > 1: 
 | 
				
			||||||
 | 
					        timeout = eval(sys.argv[1]) 
 | 
				
			||||||
 | 
					    else: 
 | 
				
			||||||
 | 
					        timeout = 30
 | 
				
			||||||
 | 
					    result = parse_logs(timeout)
 | 
				
			||||||
    print(result[1])
 | 
					    print(result[1])
 | 
				
			||||||
    if result[0] == False:
 | 
					    if result[0] == False:
 | 
				
			||||||
        print("Exiting 1...")
 | 
					        print("Exiting 1...")
 | 
				
			||||||
        os._exit(1)
 | 
					        sys.exit(1)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        print("Exiting 0...")
 | 
					        print("Exiting 0...")
 | 
				
			||||||
        os._exit(0)
 | 
					        sys.exit(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1,15 +1,14 @@
 | 
				
			|||||||
import os
 | 
					import os
 | 
				
			||||||
import pickle
 | 
					import pickle
 | 
				
			||||||
 | 
					import numpy as np 
 | 
				
			||||||
 | 
					from xgboost import XGBRegressor
 | 
				
			||||||
from zipfile import ZipFile
 | 
					from zipfile import ZipFile
 | 
				
			||||||
from datetime import datetime
 | 
					from datetime import datetime
 | 
				
			||||||
import pandas as pd
 | 
					import pandas as pd
 | 
				
			||||||
import numpy as np
 | 
					 | 
				
			||||||
from sklearn.model_selection import train_test_split
 | 
					from sklearn.model_selection import train_test_split
 | 
				
			||||||
from sklearn import linear_model
 | 
					 | 
				
			||||||
from updater import download_binance_monthly_data, download_binance_daily_data
 | 
					from updater import download_binance_monthly_data, download_binance_daily_data
 | 
				
			||||||
from config import data_base_path, model_file_path
 | 
					from config import data_base_path, model_file_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
 | 
					binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
 | 
				
			||||||
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
 | 
					training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -35,19 +34,14 @@ def download_data():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def format_data():
 | 
					def format_data():
 | 
				
			||||||
    files = sorted([x for x in os.listdir(binance_data_path)])
 | 
					    files = sorted([x for x in os.listdir(binance_data_path) if x.endswith(".zip")])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # No files to process
 | 
					 | 
				
			||||||
    if len(files) == 0:
 | 
					    if len(files) == 0:
 | 
				
			||||||
        return
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    price_df = pd.DataFrame()
 | 
					    price_df = pd.DataFrame()
 | 
				
			||||||
    for file in files:
 | 
					    for file in files:
 | 
				
			||||||
        zip_file_path = os.path.join(binance_data_path, file)
 | 
					        zip_file_path = os.path.join(binance_data_path, file)
 | 
				
			||||||
 | 
					 | 
				
			||||||
        if not zip_file_path.endswith(".zip"):
 | 
					 | 
				
			||||||
            continue
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        myzip = ZipFile(zip_file_path)
 | 
					        myzip = ZipFile(zip_file_path)
 | 
				
			||||||
        with myzip.open(myzip.filelist[0]) as f:
 | 
					        with myzip.open(myzip.filelist[0]) as f:
 | 
				
			||||||
            line = f.readline()
 | 
					            line = f.readline()
 | 
				
			||||||
@ -70,30 +64,43 @@ def format_data():
 | 
				
			|||||||
        df.index.name = "date"
 | 
					        df.index.name = "date"
 | 
				
			||||||
        price_df = pd.concat([price_df, df])
 | 
					        price_df = pd.concat([price_df, df])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
 | 
				
			||||||
 | 
					    price_df["price_diff"] = price_df["close"].diff()
 | 
				
			||||||
 | 
					    price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
 | 
				
			||||||
 | 
					    price_df["volume"] = price_df["volume"]
 | 
				
			||||||
 | 
					    price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
 | 
				
			||||||
 | 
					    price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Удаляем строки с NaN значениями
 | 
				
			||||||
 | 
					    price_df.dropna(inplace=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Сохраняем данные
 | 
				
			||||||
    price_df.sort_index().to_csv(training_price_data_path)
 | 
					    price_df.sort_index().to_csv(training_price_data_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def train_model():
 | 
					def train_model():
 | 
				
			||||||
    # Load the eth price data
 | 
					 | 
				
			||||||
    price_data = pd.read_csv(training_price_data_path)
 | 
					    price_data = pd.read_csv(training_price_data_path)
 | 
				
			||||||
    df = pd.DataFrame()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Convert 'date' to a numerical value (timestamp) we can use for regression
 | 
					    # Используем дополнительные признаки
 | 
				
			||||||
    df["date"] = pd.to_datetime(price_data["date"])
 | 
					    x = price_data[
 | 
				
			||||||
    df["date"] = df["date"].map(pd.Timestamp.timestamp)
 | 
					        [
 | 
				
			||||||
 | 
					            "timestamp",
 | 
				
			||||||
 | 
					            "price_diff",
 | 
				
			||||||
 | 
					            "volatility",
 | 
				
			||||||
 | 
					            "volume",
 | 
				
			||||||
 | 
					            "moving_avg_7",
 | 
				
			||||||
 | 
					            "moving_avg_30",
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					    y = price_data["close"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
 | 
					    x_train, x_test, y_train, y_test = train_test_split(
 | 
				
			||||||
 | 
					        x, y, test_size=0.2, random_state=0
 | 
				
			||||||
    # Reshape the data to the shape expected by sklearn
 | 
					    )
 | 
				
			||||||
    x = df["date"].values.reshape(-1, 1)
 | 
					 | 
				
			||||||
    y = df["price"].values.reshape(-1, 1)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # Split the data into training set and test set
 | 
					 | 
				
			||||||
    x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Train the model
 | 
					    # Train the model
 | 
				
			||||||
    print("Training model...")
 | 
					    print("Training model...")
 | 
				
			||||||
    model = linear_model.Lasso(alpha=0.1)
 | 
					    model = XGBRegressor()
 | 
				
			||||||
    model.fit(x_train, y_train)
 | 
					    model.fit(x_train, y_train)
 | 
				
			||||||
    print("Model trained.")
 | 
					    print("Model trained.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -105,3 +112,7 @@ def train_model():
 | 
				
			|||||||
        pickle.dump(model, f)
 | 
					        pickle.dump(model, f)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    print(f"Trained model saved to {model_file_path}")
 | 
					    print(f"Trained model saved to {model_file_path}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Optional: Оценка модели
 | 
				
			||||||
 | 
					    y_pred = model.predict(x_test)
 | 
				
			||||||
 | 
					    print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")
 | 
				
			||||||
							
								
								
									
										16
									
								
								requirements.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								requirements.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,16 @@
 | 
				
			|||||||
 | 
					flask[async]
 | 
				
			||||||
 | 
					gunicorn[gthread]
 | 
				
			||||||
 | 
					numpy==1.26.2
 | 
				
			||||||
 | 
					pandas==2.1.3
 | 
				
			||||||
 | 
					Requests==2.32.0
 | 
				
			||||||
 | 
					scikit_learn==1.3.2
 | 
				
			||||||
 | 
					werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
 | 
				
			||||||
 | 
					itsdangerous
 | 
				
			||||||
 | 
					Jinja2
 | 
				
			||||||
 | 
					MarkupSafe
 | 
				
			||||||
 | 
					python-dateutil
 | 
				
			||||||
 | 
					pytz
 | 
				
			||||||
 | 
					scipy
 | 
				
			||||||
 | 
					six
 | 
				
			||||||
 | 
					scikit-learn
 | 
				
			||||||
 | 
					xgboost
 | 
				
			||||||
							
								
								
									
										33
									
								
								scripts/init.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								scripts/init.sh
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,33 @@
 | 
				
			|||||||
 | 
					#!/bin/bash
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					set -e
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if allorad keys --home=/data/.allorad --keyring-backend test show $NAME > /dev/null 2>&1 ; then
 | 
				
			||||||
 | 
					    echo "allora account: $NAME already imported"
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    echo "creating allora account: $NAME"
 | 
				
			||||||
 | 
					    output=$(allorad keys add $NAME --home=/data/.allorad --keyring-backend test 2>&1)
 | 
				
			||||||
 | 
					    address=$(echo "$output" | grep 'address:' | sed 's/.*address: //')
 | 
				
			||||||
 | 
					    mnemonic=$(echo "$output" | tail -n 1)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Parse and update the JSON string
 | 
				
			||||||
 | 
					    updated_json=$(echo "$ALLORA_OFFCHAIN_NODE_CONFIG_JSON" | jq --arg name "$NAME" --arg mnemonic "$mnemonic" '
 | 
				
			||||||
 | 
					    .wallet.addressKeyName = $name |
 | 
				
			||||||
 | 
					    .wallet.addressRestoreMnemonic = $mnemonic
 | 
				
			||||||
 | 
					    ')
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    stringified_json=$(echo "$updated_json" | jq -c .)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    echo "ALLORA_OFFCHAIN_NODE_CONFIG_JSON='$stringified_json'" > /data/env_file
 | 
				
			||||||
 | 
					    echo ALLORA_OFFCHAIN_ACCOUNT_ADDRESS=$address >> /data/env_file
 | 
				
			||||||
 | 
					    echo "NAME=$NAME" >> /data/env_file
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    echo "Updated ALLORA_OFFCHAIN_NODE_CONFIG_JSON saved to /data/env_file"
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if grep -q "ENV_LOADED=false" /data/env_file; then
 | 
				
			||||||
 | 
					    sed -i 's/ENV_LOADED=false/ENV_LOADED=true/' /data/env_file
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    echo "ENV_LOADED=true" >> /data/env_file
 | 
				
			||||||
 | 
					fi
 | 
				
			||||||
							
								
								
									
										2
									
								
								update.sh
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										2
									
								
								update.sh
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							@ -1,4 +1,4 @@
 | 
				
			|||||||
#!/bin/bash
 | 
					#!/usr/bin/env bash
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if [ "$#" -ne 3 ]; then
 | 
					if [ "$#" -ne 3 ]; then
 | 
				
			||||||
    echo "Usage: $0 <mnemonic> <wallet> <rpc_url>"
 | 
					    echo "Usage: $0 <mnemonic> <wallet> <rpc_url>"
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										22
									
								
								update_app.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								update_app.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,22 @@
 | 
				
			|||||||
 | 
					import os
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					inference_address = os.environ["INFERENCE_API_ADDRESS"]
 | 
				
			||||||
 | 
					url = f"{inference_address}/update"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print("UPDATING INFERENCE WORKER DATA")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					response = requests.get(url)
 | 
				
			||||||
 | 
					if response.status_code == 200:
 | 
				
			||||||
 | 
					    # Request was successful
 | 
				
			||||||
 | 
					    content = response.text
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if content == "0":
 | 
				
			||||||
 | 
					        print("Response content is '0'")
 | 
				
			||||||
 | 
					        exit(0)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        exit(1)
 | 
				
			||||||
 | 
					else:
 | 
				
			||||||
 | 
					    # Request failed
 | 
				
			||||||
 | 
					    print(f"Request failed with status code: {response.status_code}")
 | 
				
			||||||
 | 
					    exit(1)
 | 
				
			||||||
							
								
								
									
										59
									
								
								updater.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								updater.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,59 @@
 | 
				
			|||||||
 | 
					import os
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					from concurrent.futures import ThreadPoolExecutor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Function to download the URL, called asynchronously by several child processes
 | 
				
			||||||
 | 
					def download_url(url, download_path):
 | 
				
			||||||
 | 
					    target_file_path = os.path.join(download_path, os.path.basename(url)) 
 | 
				
			||||||
 | 
					    if os.path.exists(target_file_path):
 | 
				
			||||||
 | 
					        # print(f"File already exists: {url}")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    response = requests.get(url)
 | 
				
			||||||
 | 
					    if response.status_code == 404:
 | 
				
			||||||
 | 
					        # print(f"File not exist: {url}")
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # create the entire path if it doesn't exist
 | 
				
			||||||
 | 
					        os.makedirs(os.path.dirname(target_file_path), exist_ok=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        with open(target_file_path, "wb") as f:
 | 
				
			||||||
 | 
					            f.write(response.content)
 | 
				
			||||||
 | 
					        # print(f"Downloaded: {url} to {target_file_path}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def download_binance_monthly_data(
 | 
				
			||||||
 | 
					    cm_or_um, symbols, intervals, years, months, download_path
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    # Verify if CM_OR_UM is correct, if not, exit
 | 
				
			||||||
 | 
					    if cm_or_um not in ["cm", "um"]:
 | 
				
			||||||
 | 
					        print("CM_OR_UM can be only cm or um")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    base_url = f"https://data.binance.vision/data/futures/{cm_or_um}/monthly/klines"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Main loop to iterate over all the arrays and launch child processes
 | 
				
			||||||
 | 
					    with ThreadPoolExecutor() as executor:
 | 
				
			||||||
 | 
					        for symbol in symbols:
 | 
				
			||||||
 | 
					            for interval in intervals:
 | 
				
			||||||
 | 
					                for year in years:
 | 
				
			||||||
 | 
					                    for month in months:
 | 
				
			||||||
 | 
					                        url = f"{base_url}/{symbol}/{interval}/{symbol}-{interval}-{year}-{month}.zip"
 | 
				
			||||||
 | 
					                        executor.submit(download_url, url, download_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def download_binance_daily_data(
 | 
				
			||||||
 | 
					    cm_or_um, symbols, intervals, year, month, download_path
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    if cm_or_um not in ["cm", "um"]:
 | 
				
			||||||
 | 
					        print("CM_OR_UM can be only cm or um")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    base_url = f"https://data.binance.vision/data/futures/{cm_or_um}/daily/klines"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with ThreadPoolExecutor() as executor:
 | 
				
			||||||
 | 
					        for symbol in symbols:
 | 
				
			||||||
 | 
					            for interval in intervals:
 | 
				
			||||||
 | 
					                for day in range(1, 32):  # Assuming days range from 1 to 31
 | 
				
			||||||
 | 
					                    url = f"{base_url}/{symbol}/{interval}/{symbol}-{interval}-{year}-{month:02d}-{day:02d}.zip"
 | 
				
			||||||
 | 
					                    executor.submit(download_url, url, download_path)
 | 
				
			||||||
		Reference in New Issue
	
	Block a user