Compare commits
8 Commits
b631442f3e
...
XGBRegress
Author | SHA1 | Date | |
---|---|---|---|
9a211a4748 | |||
14e8c74962 | |||
c7cc0079a8 | |||
c5522e8c72 | |||
7ecfd10d50 | |||
d75baceae9 | |||
714bf4c863 | |||
e65e0d95ed |
17
Dockerfile
Normal file
17
Dockerfile
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
# Use an official Python runtime as the base image
|
||||||
|
FROM amd64/python:3.9-buster as project_env
|
||||||
|
|
||||||
|
# Set the working directory in the container
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install dependencies
|
||||||
|
COPY requirements.txt requirements.txt
|
||||||
|
RUN pip install --upgrade pip setuptools \
|
||||||
|
&& pip install -r requirements.txt
|
||||||
|
|
||||||
|
FROM project_env
|
||||||
|
|
||||||
|
COPY . /app/
|
||||||
|
|
||||||
|
# Set the entrypoint command
|
||||||
|
CMD ["gunicorn", "--conf", "/app/gunicorn_conf.py", "main:app"]
|
36
app.py
36
app.py
@ -4,7 +4,7 @@ import pandas as pd
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from flask import Flask, jsonify, Response
|
from flask import Flask, jsonify, Response
|
||||||
from model import download_data, format_data, train_model
|
from model import download_data, format_data, train_model, training_price_data_path
|
||||||
from config import model_file_path
|
from config import model_file_path
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
@ -19,14 +19,36 @@ def update_data():
|
|||||||
|
|
||||||
def get_eth_inference():
|
def get_eth_inference():
|
||||||
"""Load model and predict current price."""
|
"""Load model and predict current price."""
|
||||||
|
try:
|
||||||
with open(model_file_path, "rb") as f:
|
with open(model_file_path, "rb") as f:
|
||||||
loaded_model = pickle.load(f)
|
loaded_model = pickle.load(f)
|
||||||
|
|
||||||
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
|
# Загружаем последние данные из файла
|
||||||
X_new = np.array([now_timestamp]).reshape(-1, 1)
|
price_data = pd.read_csv(training_price_data_path)
|
||||||
|
|
||||||
|
# Используем последние значения признаков для предсказания
|
||||||
|
X_new = (
|
||||||
|
price_data[
|
||||||
|
[
|
||||||
|
"timestamp",
|
||||||
|
"price_diff",
|
||||||
|
"volatility",
|
||||||
|
"volume",
|
||||||
|
"moving_avg_7",
|
||||||
|
"moving_avg_30",
|
||||||
|
]
|
||||||
|
]
|
||||||
|
.iloc[-1]
|
||||||
|
.values.reshape(1, -1)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Делаем предсказание
|
||||||
current_price_pred = loaded_model.predict(X_new)
|
current_price_pred = loaded_model.predict(X_new)
|
||||||
|
|
||||||
return current_price_pred[0]
|
return current_price_pred[0]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during inference: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
@app.route("/inference/<string:token>")
|
@app.route("/inference/<string:token>")
|
||||||
@ -34,13 +56,17 @@ def generate_inference(token):
|
|||||||
"""Generate inference for given token."""
|
"""Generate inference for given token."""
|
||||||
if not token or token != "ETH":
|
if not token or token != "ETH":
|
||||||
error_msg = "Token is required" if not token else "Token not supported"
|
error_msg = "Token is required" if not token else "Token not supported"
|
||||||
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
|
return Response(
|
||||||
|
json.dumps({"error": error_msg}), status=400, mimetype="application/json"
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
inference = get_eth_inference()
|
inference = get_eth_inference()
|
||||||
return Response(str(inference), status=200)
|
return Response(str(inference), status=200)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
|
return Response(
|
||||||
|
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@app.route("/update")
|
@app.route("/update")
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
"gasAdjustment": 1.0,
|
"gasAdjustment": 1.0,
|
||||||
"nodeRpc": "###RPC_URL###",
|
"nodeRpc": "###RPC_URL###",
|
||||||
"maxRetries": 10,
|
"maxRetries": 10,
|
||||||
"delay": 10,
|
"delay": 30,
|
||||||
"submitTx": false
|
"submitTx": false
|
||||||
},
|
},
|
||||||
"worker": [
|
"worker": [
|
||||||
|
5
config.py
Normal file
5
config.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
app_base_path = os.getenv("APP_BASE_PATH", default=os.getcwd())
|
||||||
|
data_base_path = os.path.join(app_base_path, "data")
|
||||||
|
model_file_path = os.path.join(data_base_path, "model.pkl")
|
12
gunicorn_conf.py
Normal file
12
gunicorn_conf.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
# Gunicorn config variables
|
||||||
|
loglevel = "info"
|
||||||
|
errorlog = "-" # stderr
|
||||||
|
accesslog = "-" # stdout
|
||||||
|
worker_tmp_dir = "/dev/shm"
|
||||||
|
graceful_timeout = 120
|
||||||
|
timeout = 30
|
||||||
|
keepalive = 5
|
||||||
|
worker_class = "gthread"
|
||||||
|
workers = 1
|
||||||
|
threads = 8
|
||||||
|
bind = "0.0.0.0:9000"
|
43
init.config
Executable file
43
init.config
Executable file
@ -0,0 +1,43 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
if [ ! -f config.json ]; then
|
||||||
|
echo "Error: config.json file not found, please provide one"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
nodeName=$(jq -r '.wallet.addressKeyName' config.json)
|
||||||
|
if [ -z "$nodeName" ]; then
|
||||||
|
echo "No wallet name provided for the node, please provide your preferred wallet name. config.json >> wallet.addressKeyName"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Ensure the worker-data directory exists
|
||||||
|
mkdir -p ./worker-data
|
||||||
|
|
||||||
|
json_content=$(cat ./config.json)
|
||||||
|
stringified_json=$(echo "$json_content" | jq -c .)
|
||||||
|
|
||||||
|
mnemonic=$(jq -r '.wallet.addressRestoreMnemonic' config.json)
|
||||||
|
if [ -n "$mnemonic" ]; then
|
||||||
|
echo "ALLORA_OFFCHAIN_NODE_CONFIG_JSON='$stringified_json'" > ./worker-data/env_file
|
||||||
|
echo "NAME=$nodeName" >> ./worker-data/env_file
|
||||||
|
echo "ENV_LOADED=true" >> ./worker-data/env_file
|
||||||
|
echo "wallet mnemonic already provided by you, loading config.json . Please proceed to run docker compose"
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f ./worker-data/env_file ]; then
|
||||||
|
echo "ENV_LOADED=false" > ./worker-data/env_file
|
||||||
|
fi
|
||||||
|
|
||||||
|
ENV_LOADED=$(grep '^ENV_LOADED=' ./worker-data/env_file | cut -d '=' -f 2)
|
||||||
|
if [ "$ENV_LOADED" = "false" ]; then
|
||||||
|
json_content=$(cat ./config.json)
|
||||||
|
stringified_json=$(echo "$json_content" | jq -c .)
|
||||||
|
docker run -it --entrypoint=bash -v $(pwd)/worker-data:/data -v $(pwd)/scripts:/scripts -e NAME="${nodeName}" -e ALLORA_OFFCHAIN_NODE_CONFIG_JSON="${stringified_json}" alloranetwork/allora-chain:latest -c "bash /scripts/init.sh"
|
||||||
|
echo "config.json saved to ./worker-data/env_file"
|
||||||
|
else
|
||||||
|
echo "config.json is already loaded, skipping the operation. You can set ENV_LOADED variable to false in ./worker-data/env_file to reload the config.json"
|
||||||
|
fi
|
@ -2,7 +2,6 @@ import subprocess
|
|||||||
import json
|
import json
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import os
|
|
||||||
|
|
||||||
def is_json(myjson):
|
def is_json(myjson):
|
||||||
try:
|
try:
|
||||||
@ -11,7 +10,7 @@ def is_json(myjson):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def parse_logs():
|
def parse_logs(timeout):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
while True:
|
while True:
|
||||||
unsuccessful_attempts = 0
|
unsuccessful_attempts = 0
|
||||||
@ -50,26 +49,28 @@ def parse_logs():
|
|||||||
return False, "Max Retry Reached"
|
return False, "Max Retry Reached"
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Exception occurred: {e}", flush=True)
|
print(f"Exception occurred: {e}", flush=True)
|
||||||
finally:
|
|
||||||
process.stdout.close()
|
|
||||||
|
|
||||||
print("Sleeping before next log request...", flush=True)
|
print("Sleeping before next log request...", flush=True)
|
||||||
time.sleep(30)
|
time.sleep(30)
|
||||||
|
|
||||||
if time.time() - start_time > 30 * 60:
|
if time.time() - start_time > timeout * 60:
|
||||||
print("Timeout reached: 30 minutes elapsed without success.", flush=True)
|
print(f"Timeout reached: {timeout} minutes elapsed without success.", flush=True)
|
||||||
return False, "Timeout reached: 30 minutes elapsed without success."
|
return False, f"Timeout reached: {timeout} minutes elapsed without success."
|
||||||
|
|
||||||
return False, "No Success"
|
return False, "No Success"
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
print("Parsing logs...")
|
print("Parsing logs...")
|
||||||
result = parse_logs()
|
if len(sys.argv) > 1:
|
||||||
|
timeout = eval(sys.argv[1])
|
||||||
|
else:
|
||||||
|
timeout = 30
|
||||||
|
result = parse_logs(timeout)
|
||||||
print(result[1])
|
print(result[1])
|
||||||
if result[0] == False:
|
if result[0] == False:
|
||||||
print("Exiting 1...")
|
print("Exiting 1...")
|
||||||
os._exit(1)
|
sys.exit(1)
|
||||||
else:
|
else:
|
||||||
print("Exiting 0...")
|
print("Exiting 0...")
|
||||||
os._exit(0)
|
sys.exit(0)
|
||||||
|
|
@ -1,15 +1,14 @@
|
|||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
|
import numpy as np
|
||||||
|
from xgboost import XGBRegressor
|
||||||
from zipfile import ZipFile
|
from zipfile import ZipFile
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn import linear_model
|
|
||||||
from updater import download_binance_monthly_data, download_binance_daily_data
|
from updater import download_binance_monthly_data, download_binance_daily_data
|
||||||
from config import data_base_path, model_file_path
|
from config import data_base_path, model_file_path
|
||||||
|
|
||||||
|
|
||||||
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
|
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
|
||||||
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
|
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
|
||||||
|
|
||||||
@ -35,19 +34,14 @@ def download_data():
|
|||||||
|
|
||||||
|
|
||||||
def format_data():
|
def format_data():
|
||||||
files = sorted([x for x in os.listdir(binance_data_path)])
|
files = sorted([x for x in os.listdir(binance_data_path) if x.endswith(".zip")])
|
||||||
|
|
||||||
# No files to process
|
|
||||||
if len(files) == 0:
|
if len(files) == 0:
|
||||||
return
|
return
|
||||||
|
|
||||||
price_df = pd.DataFrame()
|
price_df = pd.DataFrame()
|
||||||
for file in files:
|
for file in files:
|
||||||
zip_file_path = os.path.join(binance_data_path, file)
|
zip_file_path = os.path.join(binance_data_path, file)
|
||||||
|
|
||||||
if not zip_file_path.endswith(".zip"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
myzip = ZipFile(zip_file_path)
|
myzip = ZipFile(zip_file_path)
|
||||||
with myzip.open(myzip.filelist[0]) as f:
|
with myzip.open(myzip.filelist[0]) as f:
|
||||||
line = f.readline()
|
line = f.readline()
|
||||||
@ -70,30 +64,43 @@ def format_data():
|
|||||||
df.index.name = "date"
|
df.index.name = "date"
|
||||||
price_df = pd.concat([price_df, df])
|
price_df = pd.concat([price_df, df])
|
||||||
|
|
||||||
|
price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
|
||||||
|
price_df["price_diff"] = price_df["close"].diff()
|
||||||
|
price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
|
||||||
|
price_df["volume"] = price_df["volume"]
|
||||||
|
price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
|
||||||
|
price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
|
||||||
|
|
||||||
|
# Удаляем строки с NaN значениями
|
||||||
|
price_df.dropna(inplace=True)
|
||||||
|
|
||||||
|
# Сохраняем данные
|
||||||
price_df.sort_index().to_csv(training_price_data_path)
|
price_df.sort_index().to_csv(training_price_data_path)
|
||||||
|
|
||||||
|
|
||||||
def train_model():
|
def train_model():
|
||||||
# Load the eth price data
|
|
||||||
price_data = pd.read_csv(training_price_data_path)
|
price_data = pd.read_csv(training_price_data_path)
|
||||||
df = pd.DataFrame()
|
|
||||||
|
|
||||||
# Convert 'date' to a numerical value (timestamp) we can use for regression
|
# Используем дополнительные признаки
|
||||||
df["date"] = pd.to_datetime(price_data["date"])
|
x = price_data[
|
||||||
df["date"] = df["date"].map(pd.Timestamp.timestamp)
|
[
|
||||||
|
"timestamp",
|
||||||
|
"price_diff",
|
||||||
|
"volatility",
|
||||||
|
"volume",
|
||||||
|
"moving_avg_7",
|
||||||
|
"moving_avg_30",
|
||||||
|
]
|
||||||
|
]
|
||||||
|
y = price_data["close"]
|
||||||
|
|
||||||
df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
|
x_train, x_test, y_train, y_test = train_test_split(
|
||||||
|
x, y, test_size=0.2, random_state=0
|
||||||
# Reshape the data to the shape expected by sklearn
|
)
|
||||||
x = df["date"].values.reshape(-1, 1)
|
|
||||||
y = df["price"].values.reshape(-1, 1)
|
|
||||||
|
|
||||||
# Split the data into training set and test set
|
|
||||||
x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
|
|
||||||
|
|
||||||
# Train the model
|
# Train the model
|
||||||
print("Training model...")
|
print("Training model...")
|
||||||
model = linear_model.Lasso(alpha=0.1)
|
model = XGBRegressor()
|
||||||
model.fit(x_train, y_train)
|
model.fit(x_train, y_train)
|
||||||
print("Model trained.")
|
print("Model trained.")
|
||||||
|
|
||||||
@ -105,3 +112,7 @@ def train_model():
|
|||||||
pickle.dump(model, f)
|
pickle.dump(model, f)
|
||||||
|
|
||||||
print(f"Trained model saved to {model_file_path}")
|
print(f"Trained model saved to {model_file_path}")
|
||||||
|
|
||||||
|
# Optional: Оценка модели
|
||||||
|
y_pred = model.predict(x_test)
|
||||||
|
print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")
|
16
requirements.txt
Normal file
16
requirements.txt
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
flask[async]
|
||||||
|
gunicorn[gthread]
|
||||||
|
numpy==1.26.2
|
||||||
|
pandas==2.1.3
|
||||||
|
Requests==2.32.0
|
||||||
|
scikit_learn==1.3.2
|
||||||
|
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||||
|
itsdangerous
|
||||||
|
Jinja2
|
||||||
|
MarkupSafe
|
||||||
|
python-dateutil
|
||||||
|
pytz
|
||||||
|
scipy
|
||||||
|
six
|
||||||
|
scikit-learn
|
||||||
|
xgboost
|
33
scripts/init.sh
Normal file
33
scripts/init.sh
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
if allorad keys --home=/data/.allorad --keyring-backend test show $NAME > /dev/null 2>&1 ; then
|
||||||
|
echo "allora account: $NAME already imported"
|
||||||
|
else
|
||||||
|
echo "creating allora account: $NAME"
|
||||||
|
output=$(allorad keys add $NAME --home=/data/.allorad --keyring-backend test 2>&1)
|
||||||
|
address=$(echo "$output" | grep 'address:' | sed 's/.*address: //')
|
||||||
|
mnemonic=$(echo "$output" | tail -n 1)
|
||||||
|
|
||||||
|
# Parse and update the JSON string
|
||||||
|
updated_json=$(echo "$ALLORA_OFFCHAIN_NODE_CONFIG_JSON" | jq --arg name "$NAME" --arg mnemonic "$mnemonic" '
|
||||||
|
.wallet.addressKeyName = $name |
|
||||||
|
.wallet.addressRestoreMnemonic = $mnemonic
|
||||||
|
')
|
||||||
|
|
||||||
|
stringified_json=$(echo "$updated_json" | jq -c .)
|
||||||
|
|
||||||
|
echo "ALLORA_OFFCHAIN_NODE_CONFIG_JSON='$stringified_json'" > /data/env_file
|
||||||
|
echo ALLORA_OFFCHAIN_ACCOUNT_ADDRESS=$address >> /data/env_file
|
||||||
|
echo "NAME=$NAME" >> /data/env_file
|
||||||
|
|
||||||
|
echo "Updated ALLORA_OFFCHAIN_NODE_CONFIG_JSON saved to /data/env_file"
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
if grep -q "ENV_LOADED=false" /data/env_file; then
|
||||||
|
sed -i 's/ENV_LOADED=false/ENV_LOADED=true/' /data/env_file
|
||||||
|
else
|
||||||
|
echo "ENV_LOADED=true" >> /data/env_file
|
||||||
|
fi
|
2
update.sh
Normal file → Executable file
2
update.sh
Normal file → Executable file
@ -1,4 +1,4 @@
|
|||||||
#!/bin/bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
if [ "$#" -ne 3 ]; then
|
if [ "$#" -ne 3 ]; then
|
||||||
echo "Usage: $0 <mnemonic> <wallet> <rpc_url>"
|
echo "Usage: $0 <mnemonic> <wallet> <rpc_url>"
|
||||||
|
22
update_app.py
Normal file
22
update_app.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
import os
|
||||||
|
import requests
|
||||||
|
|
||||||
|
inference_address = os.environ["INFERENCE_API_ADDRESS"]
|
||||||
|
url = f"{inference_address}/update"
|
||||||
|
|
||||||
|
print("UPDATING INFERENCE WORKER DATA")
|
||||||
|
|
||||||
|
response = requests.get(url)
|
||||||
|
if response.status_code == 200:
|
||||||
|
# Request was successful
|
||||||
|
content = response.text
|
||||||
|
|
||||||
|
if content == "0":
|
||||||
|
print("Response content is '0'")
|
||||||
|
exit(0)
|
||||||
|
else:
|
||||||
|
exit(1)
|
||||||
|
else:
|
||||||
|
# Request failed
|
||||||
|
print(f"Request failed with status code: {response.status_code}")
|
||||||
|
exit(1)
|
59
updater.py
Normal file
59
updater.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import os
|
||||||
|
import requests
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
|
||||||
|
# Function to download the URL, called asynchronously by several child processes
|
||||||
|
def download_url(url, download_path):
|
||||||
|
target_file_path = os.path.join(download_path, os.path.basename(url))
|
||||||
|
if os.path.exists(target_file_path):
|
||||||
|
# print(f"File already exists: {url}")
|
||||||
|
return
|
||||||
|
|
||||||
|
response = requests.get(url)
|
||||||
|
if response.status_code == 404:
|
||||||
|
# print(f"File not exist: {url}")
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
|
||||||
|
# create the entire path if it doesn't exist
|
||||||
|
os.makedirs(os.path.dirname(target_file_path), exist_ok=True)
|
||||||
|
|
||||||
|
with open(target_file_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
# print(f"Downloaded: {url} to {target_file_path}")
|
||||||
|
|
||||||
|
|
||||||
|
def download_binance_monthly_data(
|
||||||
|
cm_or_um, symbols, intervals, years, months, download_path
|
||||||
|
):
|
||||||
|
# Verify if CM_OR_UM is correct, if not, exit
|
||||||
|
if cm_or_um not in ["cm", "um"]:
|
||||||
|
print("CM_OR_UM can be only cm or um")
|
||||||
|
return
|
||||||
|
base_url = f"https://data.binance.vision/data/futures/{cm_or_um}/monthly/klines"
|
||||||
|
|
||||||
|
# Main loop to iterate over all the arrays and launch child processes
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
for symbol in symbols:
|
||||||
|
for interval in intervals:
|
||||||
|
for year in years:
|
||||||
|
for month in months:
|
||||||
|
url = f"{base_url}/{symbol}/{interval}/{symbol}-{interval}-{year}-{month}.zip"
|
||||||
|
executor.submit(download_url, url, download_path)
|
||||||
|
|
||||||
|
|
||||||
|
def download_binance_daily_data(
|
||||||
|
cm_or_um, symbols, intervals, year, month, download_path
|
||||||
|
):
|
||||||
|
if cm_or_um not in ["cm", "um"]:
|
||||||
|
print("CM_OR_UM can be only cm or um")
|
||||||
|
return
|
||||||
|
base_url = f"https://data.binance.vision/data/futures/{cm_or_um}/daily/klines"
|
||||||
|
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
for symbol in symbols:
|
||||||
|
for interval in intervals:
|
||||||
|
for day in range(1, 32): # Assuming days range from 1 to 31
|
||||||
|
url = f"{base_url}/{symbol}/{interval}/{symbol}-{interval}-{year}-{month:02d}-{day:02d}.zip"
|
||||||
|
executor.submit(download_url, url, download_path)
|
Reference in New Issue
Block a user