From e007985af33fd1500e31fc0227ca085687e4a724 Mon Sep 17 00:00:00 2001 From: vvzvlad Date: Sat, 24 Aug 2024 02:33:19 +0300 Subject: [PATCH] Add model-lasso.py --- model-lasso.py | 107 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 107 insertions(+) create mode 100644 model-lasso.py diff --git a/model-lasso.py b/model-lasso.py new file mode 100644 index 0000000..7311661 --- /dev/null +++ b/model-lasso.py @@ -0,0 +1,107 @@ +import os +import pickle +from zipfile import ZipFile +from datetime import datetime +import pandas as pd +import numpy as np +from sklearn.model_selection import train_test_split +from sklearn import linear_model +from updater import download_binance_monthly_data, download_binance_daily_data +from config import data_base_path, model_file_path + + +binance_data_path = os.path.join(data_base_path, "binance/futures-klines") +training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv") + + +def download_data(): + cm_or_um = "um" + symbols = ["ETHUSDT"] + intervals = ["1d"] + years = ["2020", "2021", "2022", "2023", "2024"] + months = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"] + download_path = binance_data_path + download_binance_monthly_data( + cm_or_um, symbols, intervals, years, months, download_path + ) + print(f"Downloaded monthly data to {download_path}.") + current_datetime = datetime.now() + current_year = current_datetime.year + current_month = current_datetime.month + download_binance_daily_data( + cm_or_um, symbols, intervals, current_year, current_month, download_path + ) + print(f"Downloaded daily data to {download_path}.") + + +def format_data(): + files = sorted([x for x in os.listdir(binance_data_path)]) + + # No files to process + if len(files) == 0: + return + + price_df = pd.DataFrame() + for file in files: + zip_file_path = os.path.join(binance_data_path, file) + + if not zip_file_path.endswith(".zip"): + continue + + myzip = ZipFile(zip_file_path) + with myzip.open(myzip.filelist[0]) as f: + line = f.readline() + header = 0 if line.decode("utf-8").startswith("open_time") else None + df = pd.read_csv(myzip.open(myzip.filelist[0]), header=header).iloc[:, :11] + df.columns = [ + "start_time", + "open", + "high", + "low", + "close", + "volume", + "end_time", + "volume_usd", + "n_trades", + "taker_volume", + "taker_volume_usd", + ] + df.index = [pd.Timestamp(x + 1, unit="ms") for x in df["end_time"]] + df.index.name = "date" + price_df = pd.concat([price_df, df]) + + price_df.sort_index().to_csv(training_price_data_path) + + +def train_model(): + # Load the eth price data + price_data = pd.read_csv(training_price_data_path) + df = pd.DataFrame() + + # Convert 'date' to a numerical value (timestamp) we can use for regression + df["date"] = pd.to_datetime(price_data["date"]) + df["date"] = df["date"].map(pd.Timestamp.timestamp) + + df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1) + + # Reshape the data to the shape expected by sklearn + x = df["date"].values.reshape(-1, 1) + y = df["price"].values.reshape(-1, 1) + + # Split the data into training set and test set + x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0) + + # Train the model + print("Training model...") + model = linear_model.Lasso(alpha=0.1) + model.fit(x_train, y_train) + print("Model trained.") + + # create the model's parent directory if it doesn't exist + os.makedirs(os.path.dirname(model_file_path), exist_ok=True) + + # Save the trained model to a file + with open(model_file_path, "wb") as f: + pickle.dump(model, f) + + print(f"Trained model saved to {model_file_path}") \ No newline at end of file