new model
This commit is contained in:
parent
c7cc0079a8
commit
14e8c74962
44
app.py
44
app.py
@ -4,7 +4,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
from flask import Flask, jsonify, Response
|
||||
from model import download_data, format_data, train_model
|
||||
from model import download_data, format_data, train_model, training_price_data_path
|
||||
from config import model_file_path
|
||||
|
||||
app = Flask(__name__)
|
||||
@ -19,14 +19,36 @@ def update_data():
|
||||
|
||||
def get_eth_inference():
|
||||
"""Load model and predict current price."""
|
||||
with open(model_file_path, "rb") as f:
|
||||
loaded_model = pickle.load(f)
|
||||
try:
|
||||
with open(model_file_path, "rb") as f:
|
||||
loaded_model = pickle.load(f)
|
||||
|
||||
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
|
||||
X_new = np.array([now_timestamp]).reshape(-1, 1)
|
||||
current_price_pred = loaded_model.predict(X_new)
|
||||
# Загружаем последние данные из файла
|
||||
price_data = pd.read_csv(training_price_data_path)
|
||||
|
||||
return current_price_pred[0]
|
||||
# Используем последние значения признаков для предсказания
|
||||
X_new = (
|
||||
price_data[
|
||||
[
|
||||
"timestamp",
|
||||
"price_diff",
|
||||
"volatility",
|
||||
"volume",
|
||||
"moving_avg_7",
|
||||
"moving_avg_30",
|
||||
]
|
||||
]
|
||||
.iloc[-1]
|
||||
.values.reshape(1, -1)
|
||||
)
|
||||
|
||||
# Делаем предсказание
|
||||
current_price_pred = loaded_model.predict(X_new)
|
||||
|
||||
return current_price_pred[0]
|
||||
except Exception as e:
|
||||
print(f"Error during inference: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
@app.route("/inference/<string:token>")
|
||||
@ -34,13 +56,17 @@ def generate_inference(token):
|
||||
"""Generate inference for given token."""
|
||||
if not token or token != "ETH":
|
||||
error_msg = "Token is required" if not token else "Token not supported"
|
||||
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
|
||||
return Response(
|
||||
json.dumps({"error": error_msg}), status=400, mimetype="application/json"
|
||||
)
|
||||
|
||||
try:
|
||||
inference = get_eth_inference()
|
||||
return Response(str(inference), status=200)
|
||||
except Exception as e:
|
||||
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
|
||||
return Response(
|
||||
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
|
||||
)
|
||||
|
||||
|
||||
@app.route("/update")
|
||||
|
57
model.py
57
model.py
@ -1,15 +1,14 @@
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
from xgboost import XGBRegressor
|
||||
from zipfile import ZipFile
|
||||
from datetime import datetime
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn import linear_model
|
||||
from updater import download_binance_monthly_data, download_binance_daily_data
|
||||
from config import data_base_path, model_file_path
|
||||
|
||||
|
||||
binance_data_path = os.path.join(data_base_path, "binance/futures-klines")
|
||||
training_price_data_path = os.path.join(data_base_path, "eth_price_data.csv")
|
||||
|
||||
@ -35,19 +34,14 @@ def download_data():
|
||||
|
||||
|
||||
def format_data():
|
||||
files = sorted([x for x in os.listdir(binance_data_path)])
|
||||
files = sorted([x for x in os.listdir(binance_data_path) if x.endswith(".zip")])
|
||||
|
||||
# No files to process
|
||||
if len(files) == 0:
|
||||
return
|
||||
|
||||
price_df = pd.DataFrame()
|
||||
for file in files:
|
||||
zip_file_path = os.path.join(binance_data_path, file)
|
||||
|
||||
if not zip_file_path.endswith(".zip"):
|
||||
continue
|
||||
|
||||
myzip = ZipFile(zip_file_path)
|
||||
with myzip.open(myzip.filelist[0]) as f:
|
||||
line = f.readline()
|
||||
@ -70,30 +64,43 @@ def format_data():
|
||||
df.index.name = "date"
|
||||
price_df = pd.concat([price_df, df])
|
||||
|
||||
price_df["timestamp"] = price_df.index.map(pd.Timestamp.timestamp)
|
||||
price_df["price_diff"] = price_df["close"].diff()
|
||||
price_df["volatility"] = (price_df["high"] - price_df["low"]) / price_df["open"]
|
||||
price_df["volume"] = price_df["volume"]
|
||||
price_df["moving_avg_7"] = price_df["close"].rolling(window=7).mean()
|
||||
price_df["moving_avg_30"] = price_df["close"].rolling(window=30).mean()
|
||||
|
||||
# Удаляем строки с NaN значениями
|
||||
price_df.dropna(inplace=True)
|
||||
|
||||
# Сохраняем данные
|
||||
price_df.sort_index().to_csv(training_price_data_path)
|
||||
|
||||
|
||||
def train_model():
|
||||
# Load the eth price data
|
||||
price_data = pd.read_csv(training_price_data_path)
|
||||
df = pd.DataFrame()
|
||||
|
||||
# Convert 'date' to a numerical value (timestamp) we can use for regression
|
||||
df["date"] = pd.to_datetime(price_data["date"])
|
||||
df["date"] = df["date"].map(pd.Timestamp.timestamp)
|
||||
# Используем дополнительные признаки
|
||||
x = price_data[
|
||||
[
|
||||
"timestamp",
|
||||
"price_diff",
|
||||
"volatility",
|
||||
"volume",
|
||||
"moving_avg_7",
|
||||
"moving_avg_30",
|
||||
]
|
||||
]
|
||||
y = price_data["close"]
|
||||
|
||||
df["price"] = price_data[["open", "close", "high", "low"]].mean(axis=1)
|
||||
|
||||
# Reshape the data to the shape expected by sklearn
|
||||
x = df["date"].values.reshape(-1, 1)
|
||||
y = df["price"].values.reshape(-1, 1)
|
||||
|
||||
# Split the data into training set and test set
|
||||
x_train, _, y_train, _ = train_test_split(x, y, test_size=0.2, random_state=0)
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
x, y, test_size=0.2, random_state=0
|
||||
)
|
||||
|
||||
# Train the model
|
||||
print("Training model...")
|
||||
model = linear_model.Lasso(alpha=0.1)
|
||||
model = XGBRegressor()
|
||||
model.fit(x_train, y_train)
|
||||
print("Model trained.")
|
||||
|
||||
@ -105,3 +112,7 @@ def train_model():
|
||||
pickle.dump(model, f)
|
||||
|
||||
print(f"Trained model saved to {model_file_path}")
|
||||
|
||||
# Optional: Оценка модели
|
||||
y_pred = model.predict(x_test)
|
||||
print(f"Mean Absolute Error: {np.mean(np.abs(y_test - y_pred))}")
|
@ -5,3 +5,12 @@ pandas==2.1.3
|
||||
Requests==2.32.0
|
||||
scikit_learn==1.3.2
|
||||
werkzeug>=3.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||
itsdangerous
|
||||
Jinja2
|
||||
MarkupSafe
|
||||
python-dateutil
|
||||
pytz
|
||||
scipy
|
||||
six
|
||||
sklearn
|
||||
xgboost
|
Loading…
Reference in New Issue
Block a user