58 lines
1.5 KiB
Python
58 lines
1.5 KiB
Python
|
import json
|
||
|
import pickle
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from datetime import datetime
|
||
|
from flask import Flask, jsonify, Response
|
||
|
from model import download_data, format_data, train_model
|
||
|
from config import model_file_path
|
||
|
|
||
|
app = Flask(__name__)
|
||
|
|
||
|
|
||
|
def update_data():
|
||
|
"""Download price data, format data and train model."""
|
||
|
download_data()
|
||
|
format_data()
|
||
|
train_model()
|
||
|
|
||
|
|
||
|
def get_eth_inference():
|
||
|
"""Load model and predict current price."""
|
||
|
with open(model_file_path, "rb") as f:
|
||
|
loaded_model = pickle.load(f)
|
||
|
|
||
|
now_timestamp = pd.Timestamp(datetime.now()).timestamp()
|
||
|
X_new = np.array([now_timestamp]).reshape(-1, 1)
|
||
|
current_price_pred = loaded_model.predict(X_new)
|
||
|
|
||
|
return current_price_pred[0]
|
||
|
|
||
|
|
||
|
@app.route("/inference/<string:token>")
|
||
|
def generate_inference(token):
|
||
|
"""Generate inference for given token."""
|
||
|
if not token or token != "ETH":
|
||
|
error_msg = "Token is required" if not token else "Token not supported"
|
||
|
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
|
||
|
|
||
|
try:
|
||
|
inference = get_eth_inference()
|
||
|
return Response(str(inference), status=200)
|
||
|
except Exception as e:
|
||
|
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
|
||
|
|
||
|
|
||
|
@app.route("/update")
|
||
|
def update():
|
||
|
"""Update data and return status."""
|
||
|
try:
|
||
|
update_data()
|
||
|
return "0"
|
||
|
except Exception:
|
||
|
return "1"
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
update_data()
|
||
|
app.run(host="0.0.0.0", port=8000)
|