2024-08-25 21:55:45 +03:00
|
|
|
import json
|
|
|
|
import pickle
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
from datetime import datetime
|
|
|
|
from flask import Flask, jsonify, Response
|
2024-09-03 04:24:43 +03:00
|
|
|
from model import download_data, format_data, train_model, training_price_data_path
|
2024-08-25 21:55:45 +03:00
|
|
|
from config import model_file_path
|
|
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def update_data():
|
|
|
|
"""Download price data, format data and train model."""
|
|
|
|
download_data()
|
|
|
|
format_data()
|
|
|
|
train_model()
|
|
|
|
|
|
|
|
|
2024-09-04 22:22:25 +03:00
|
|
|
def get_inference(token, period):
|
2024-09-03 04:24:43 +03:00
|
|
|
try:
|
|
|
|
with open(model_file_path, "rb") as f:
|
|
|
|
loaded_model = pickle.load(f)
|
|
|
|
|
|
|
|
# Загружаем последние данные из файла
|
|
|
|
price_data = pd.read_csv(training_price_data_path)
|
2024-08-25 21:55:45 +03:00
|
|
|
|
2024-09-03 04:24:43 +03:00
|
|
|
# Используем последние значения признаков для предсказания
|
2024-09-04 22:22:25 +03:00
|
|
|
last_row = price_data.iloc[-1]
|
|
|
|
|
|
|
|
# Получаем последний timestamp
|
|
|
|
last_timestamp = last_row["timestamp"]
|
|
|
|
|
|
|
|
# Преобразуем период в секунды (пример)
|
|
|
|
period_seconds = convert_period_to_seconds(period)
|
|
|
|
|
|
|
|
# Рассчитываем новый временной штамп на основе периода
|
|
|
|
new_timestamp = last_timestamp + period_seconds
|
|
|
|
|
|
|
|
# timestamp
|
|
|
|
X_new = np.array(
|
|
|
|
[
|
|
|
|
new_timestamp,
|
|
|
|
last_row["price_diff"],
|
|
|
|
last_row["volatility"],
|
|
|
|
last_row["volume"],
|
|
|
|
last_row["moving_avg_7"],
|
|
|
|
last_row["moving_avg_30"],
|
2024-09-03 04:24:43 +03:00
|
|
|
]
|
2024-09-04 22:22:25 +03:00
|
|
|
).reshape(1, -1)
|
|
|
|
|
|
|
|
# Предсказание
|
|
|
|
future_price_pred = loaded_model.predict(X_new)
|
2024-08-25 21:55:45 +03:00
|
|
|
|
2024-09-04 22:22:25 +03:00
|
|
|
return future_price_pred[0]
|
2024-09-03 04:24:43 +03:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print(f"Error during inference: {str(e)}")
|
|
|
|
raise
|
2024-08-25 21:55:45 +03:00
|
|
|
|
|
|
|
|
2024-09-04 22:22:25 +03:00
|
|
|
def convert_period_to_seconds(period):
|
|
|
|
"""Конвертируем период в секунды."""
|
|
|
|
if period.endswith("min"):
|
|
|
|
return int(period[:-3]) * 60
|
|
|
|
elif period.endswith("h"):
|
|
|
|
return int(period[:-1]) * 3600
|
|
|
|
elif period.endswith("d"):
|
|
|
|
return int(period[:-1]) * 86400
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown period format: {period}")
|
|
|
|
|
2024-08-25 21:55:45 +03:00
|
|
|
|
2024-09-04 22:22:25 +03:00
|
|
|
@app.route("/inference/<string:token>/<string:period>")
|
|
|
|
def generate_inference(token, period):
|
|
|
|
"""Generate inference for given token and period."""
|
2024-08-25 21:55:45 +03:00
|
|
|
try:
|
2024-09-04 22:22:25 +03:00
|
|
|
inference = get_inference(token, period)
|
2024-08-25 21:55:45 +03:00
|
|
|
return Response(str(inference), status=200)
|
|
|
|
except Exception as e:
|
2024-09-03 04:24:43 +03:00
|
|
|
return Response(
|
|
|
|
json.dumps({"error": str(e)}), status=500, mimetype="application/json"
|
|
|
|
)
|
2024-08-25 21:55:45 +03:00
|
|
|
|
|
|
|
|
|
|
|
@app.route("/update")
|
|
|
|
def update():
|
|
|
|
"""Update data and return status."""
|
|
|
|
try:
|
|
|
|
update_data()
|
|
|
|
return "0"
|
|
|
|
except Exception:
|
|
|
|
return "1"
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
update_data()
|
2024-09-04 22:22:25 +03:00
|
|
|
app.run(host="0.0.0.0", port=8127)
|